Cohen Keira A, Abeel Thomas, Manson McGuire Abigail, Desjardins Christopher A, Munsamy Vanisha, Shea Terrance P, Walker Bruce J, Bantubani Nonkqubela, Almeida Deepak V, Alvarado Lucia, Chapman Sinéad B, Mvelase Nomonde R, Duffy Eamon Y, Fitzgerald Michael G, Govender Pamla, Gujja Sharvari, Hamilton Susanna, Howarth Clinton, Larimer Jeffrey D, Maharaj Kashmeel, Pearson Matthew D, Priest Margaret E, Zeng Qiandong, Padayatchi Nesri, Grosset Jacques, Young Sarah K, Wortman Jennifer, Mlisana Koleka P, O'Donnell Max R, Birren Bruce W, Bishai William R, Pym Alexander S, Earl Ashlee M
Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America; KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa.
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
PLoS Med. 2015 Sep 29;12(9):e1001880. doi: 10.1371/journal.pmed.1001880. eCollection 2015 Sep.
The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.
We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937-1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974-1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988-1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe.
In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.
抗生素耐药性的持续发展威胁着许多传染病的治疗与控制。2005年在南非夸祖鲁 - 纳塔尔省图盖拉费里发现的全球最大规模广泛耐药(XDR)结核病疫情一直持续至今,便是例证。尚不清楚夸祖鲁 - 纳塔尔省XDR结核病的出现是由于近期结核病控制不力与艾滋病毒共同作用,还是其他因素所致。了解此次致命的XDR疫情中耐药性的起源,将为其他地区耐药结核病的控制与预防提供依据。在本研究中,我们使用全基因组测序和年代分析来确定XDR结核病是近期出现的,还是有古老的前身。
我们对2008年至2013年在夸祖鲁 - 纳塔尔省收集的337株结核分枝杆菌临床分离株进行了全基因组测序和药敏试验,另外还包括从该省患者中收集的3株历史分离株,其中包括一株2005年图盖拉费里XDR疫情的分离株、一株1994年的耐多药(MDR)分离株和一株1995年的全敏感分离株。我们运用了一系列全基因组比较技术来评估菌株之间的相关性,确定耐药突变获得的顺序,包括导致LAM4 spoligotype中XDR结核病的突变获得时间,并计算MDR和XDR的独立进化出现次数。我们进行的测序和分析揭示了一个由50个成员组成的XDR结核分枝杆菌克隆,它与图盖拉费里XDR疫情菌株高度相关。我们估计,该克隆中赋予异烟肼和链霉素耐药性的突变是在图盖拉费里疫情爆发前50年获得的(katG S315T [异烟肼];gidB 130 bp缺失 [链霉素];1957年 [95%最高后验密度(HPD):1937 - 1971年]),随后MDR和XDR分别在疫情爆发前20年(rpoB L452P [利福平];pncA 1 bp插入 [吡嗪酰胺];1984年 [95% HPD:1974 - 1992年])和10年(rpoB D435G [利福平];rrs 1400 [卡那霉素];gyrA A90V [氧氟沙星];1995年 [95% HPD:1988 - 1999年])出现。我们观察到MDR和XDR频繁地从头进化,分别有56次和9次独立进化事件。异烟肼耐药性在利福平耐药性之前出现46次,而利福平耐药性仅在异烟肼耐药性之前出现两次。我们在该数据集中鉴定出了其他可能的利福平补偿性突变。本研究的一个主要局限性在于,关于突变获得顺序和时间的结论可能并不代表全球其他地区耐药性出现的普遍模式。
在首次基于全基因组的结核分枝杆菌临床分离株耐药性出现情况分析中,我们表明图盖拉费里LAM4 XDR疫情菌株的祖先前体在抗生素时代初期就获得了对一线药物的突变。随后在几十年间且在该地区艾滋病毒爆发之前逐步积累的耐药突变产生了MDR和XDR,并出现了补偿性突变。我们的结果表明,如今传播的耐药菌株不仅反映了当前结核病控制工作的薄弱环节,也反映了可追溯到50年前的薄弱环节。在耐药结核病中,异烟肼耐药性绝大多数是最初获得的耐药突变,而南非目前仅评估利福平耐药性的快速分子诊断方法无法检测到这种突变。