Suppr超能文献

一种基于改进YOLOv7的交通标志小目标检测算法

A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7.

作者信息

Li Songjiang, Wang Shilong, Wang Peng

机构信息

College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.

Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401120, China.

出版信息

Sensors (Basel). 2023 Aug 13;23(16):7145. doi: 10.3390/s23167145.

Abstract

Traffic sign detection is a crucial task in computer vision, finding wide-ranging applications in intelligent transportation systems, autonomous driving, and traffic safety. However, due to the complexity and variability of traffic environments and the small size of traffic signs, detecting small traffic signs in real-world scenes remains a challenging problem. In order to improve the recognition of road traffic signs, this paper proposes a small object detection algorithm for traffic signs based on the improved YOLOv7. First, the small target detection layer in the neck region was added to augment the detection capability for small traffic sign targets. Simultaneously, the integration of self-attention and convolutional mix modules (ACmix) was applied to the newly added small target detection layer, enabling the capture of additional feature information through the convolutional and self-attention channels within ACmix. Furthermore, the feature extraction capability of the convolution modules was enhanced by replacing the regular convolution modules in the neck layer with omni-dimensional dynamic convolution (ODConv). To further enhance the accuracy of small target detection, the normalized Gaussian Wasserstein distance (NWD) metric was introduced to mitigate the sensitivity to minor positional deviations of small objects. The experimental results on the challenging public dataset TT100K demonstrate that the SANO-YOLOv7 algorithm achieved an 88.7% mAP@0.5, outperforming the baseline model YOLOv7 by 5.3%.

摘要

交通标志检测是计算机视觉中的一项关键任务,在智能交通系统、自动驾驶和交通安全等领域有着广泛的应用。然而,由于交通环境的复杂性和多变性以及交通标志的尺寸较小,在现实场景中检测小尺寸交通标志仍然是一个具有挑战性的问题。为了提高道路交通标志的识别率,本文提出了一种基于改进的YOLOv7的交通标志小目标检测算法。首先,在颈部区域添加了小目标检测层,以增强对小尺寸交通标志目标的检测能力。同时,将自注意力和卷积混合模块(ACmix)的集成应用于新添加的小目标检测层,通过ACmix内的卷积和自注意力通道捕获额外的特征信息。此外,通过用全维动态卷积(ODConv)替换颈部层中的常规卷积模块,增强了卷积模块的特征提取能力。为了进一步提高小目标检测的准确性,引入了归一化高斯瓦瑟斯坦距离(NWD)度量,以减轻对小物体微小位置偏差的敏感性。在具有挑战性的公共数据集TT100K上的实验结果表明,SANO-YOLOv7算法实现了88.7%的mAP@0.5,比基线模型YOLOv7高出5.3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ed/10459082/39cf4ef23791/sensors-23-07145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验