Latapiat Verónica, Saez Mauricio, Pedroso Inti, Martin Alberto J M
Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile.
Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile.
Front Genet. 2023 Aug 10;14:1209416. doi: 10.3389/fgene.2023.1209416. eCollection 2023.
This perspective highlights the potential of individualized networks as a novel strategy for studying complex diseases through patient stratification, enabling advancements in precision medicine. We emphasize the impact of interpatient heterogeneity resulting from genetic and environmental factors and discuss how individualized networks improve our ability to develop treatments and enhance diagnostics. Integrating system biology, combining multimodal information such as genomic and clinical data has reached a tipping point, allowing the inference of biological networks at a single-individual resolution. This approach generates a specific biological network per sample, representing the individual from which the sample originated. The availability of individualized networks enables applications in personalized medicine, such as identifying malfunctions and selecting tailored treatments. In essence, reliable, individualized networks can expedite research progress in understanding drug response variability by modeling heterogeneity among individuals and enabling the personalized selection of pharmacological targets for treatment. Therefore, developing diverse and cost-effective approaches for generating these networks is crucial for widespread application in clinical services.
这一观点强调了个体化网络作为一种通过患者分层研究复杂疾病的新策略的潜力,有助于推动精准医学的发展。我们强调了遗传和环境因素导致的患者间异质性的影响,并讨论了个体化网络如何提高我们开发治疗方法和改进诊断的能力。整合系统生物学,结合基因组和临床数据等多模态信息已达到一个临界点,使得能够以单一个体分辨率推断生物网络。这种方法为每个样本生成一个特定的生物网络,代表该样本所源自的个体。个体化网络的可用性使得其能够应用于个性化医疗,例如识别故障和选择量身定制的治疗方法。本质上,可靠的个体化网络可以通过对个体间的异质性进行建模并实现治疗药理学靶点的个性化选择,加速在理解药物反应变异性方面的研究进展。因此,开发多样化且具有成本效益的方法来生成这些网络对于在临床服务中的广泛应用至关重要。