Suppr超能文献

在非洲卫生信息交换中对常规收集的健康数据进行记录链接。

Record linkage for routinely collected health data in an African health information exchange.

机构信息

Provincial Health Data Centre, Health Intelligence Directorate, Western Cape Government Health, Western Cape Province, South Africa.

Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, South Africa.

出版信息

Int J Popul Data Sci. 2023 Feb 28;8(1):1771. doi: 10.23889/ijpds.v6i1.1771. eCollection 2023.

Abstract

INTRODUCTION

The Patient Master Index (PMI) plays an important role in management of patient information and epidemiological research, and the availability of unique patient identifiers improves the accuracy when linking patient records across disparate datasets. In our environment, however, a unique identifier is seldom present in all datasets containing patient information. Quasi identifiers are used to attempt to link patient records but sometimes present higher risk of over-linking. Data quality and completeness thus affect the ability to make correct linkages.

AIM

This paper describes the record linkage system that is currently implemented at the Provincial Health Data Centre (PHDC) in the Western Cape, South Africa, and assesses its output to date.

METHODS

We apply a stepwise deterministic record linkage approach to link patient data that are routinely collected from health information systems in the Western Cape province of South Africa. Variables used in the linkage process include South African National Identity number (RSA ID), date of birth, year of birth, month of birth, day of birth, residential address and contact information. Descriptive analyses are used to estimate the level and extent of duplication in the provincial PMI.

RESULTS

The percentage of duplicates in the provincial PMI lies between 10% and 20%. Duplicates mainly arise from spelling errors, and surname and first names carry most of the errors, with the first names and surname being different for the same individual in approximately 22% of duplicates. The RSA ID is the variable mostly affected by poor completeness with less than 30% of the records having an RSA ID.The current linkage algorithm requires refinement as it makes use of algorithms that have been developed and validated on anglicised names which might not work well for local names. Linkage is also affected by data quality-related issues that are associated with the routine nature of the data which often make it difficult to validate and enforce integrity at the point of data capture.

摘要

简介

患者主索引 (PMI) 在患者信息管理和流行病学研究中发挥着重要作用,而独特的患者标识符的可用性提高了在不同数据集之间链接患者记录的准确性。然而,在我们的环境中,很少有独特的标识符存在于包含患者信息的所有数据集中。准标识符用于尝试链接患者记录,但有时存在更高的过度链接风险。因此,数据质量和完整性会影响正确链接的能力。

目的

本文介绍了目前在南非西开普省省级卫生数据中心 (PHDC) 实施的记录链接系统,并评估了其迄今为止的输出。

方法

我们应用逐步确定性记录链接方法来链接常规从南非西开普省卫生信息系统中收集的患者数据。链接过程中使用的变量包括南非国民身份证号码 (RSA ID)、出生日期、出生年份、出生月份、出生日期、居住地址和联系方式。描述性分析用于估计省级 PMI 中的重复水平和程度。

结果

省级 PMI 中的重复率在 10%到 20%之间。重复主要是由于拼写错误造成的,姓氏和名字承载了大部分错误,大约 22%的重复中,同一个人的名字和姓氏不同。RSA ID 是受完整性影响最大的变量,只有不到 30%的记录具有 RSA ID。当前的链接算法需要改进,因为它使用了在英文名字上开发和验证的算法,这些算法可能不适用于本地名字。链接还受到与数据质量相关的问题的影响,这些问题与数据的常规性质有关,这往往使得在数据捕获时很难验证和执行完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ed/10448229/0a2f21230d3f/ijpds-08-1771-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验