Suppr超能文献

联邦学习和分布式学习在电子健康记录和结构化医疗数据中的应用:范围综述。

Federated and distributed learning applications for electronic health records and structured medical data: a scoping review.

机构信息

Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore.

National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore.

出版信息

J Am Med Inform Assoc. 2023 Nov 17;30(12):2041-2049. doi: 10.1093/jamia/ocad170.

Abstract

OBJECTIVES

Federated learning (FL) has gained popularity in clinical research in recent years to facilitate privacy-preserving collaboration. Structured data, one of the most prevalent forms of clinical data, has experienced significant growth in volume concurrently, notably with the widespread adoption of electronic health records in clinical practice. This review examines FL applications on structured medical data, identifies contemporary limitations, and discusses potential innovations.

MATERIALS AND METHODS

We searched 5 databases, SCOPUS, MEDLINE, Web of Science, Embase, and CINAHL, to identify articles that applied FL to structured medical data and reported results following the PRISMA guidelines. Each selected publication was evaluated from 3 primary perspectives, including data quality, modeling strategies, and FL frameworks.

RESULTS

Out of the 1193 papers screened, 34 met the inclusion criteria, with each article consisting of one or more studies that used FL to handle structured clinical/medical data. Of these, 24 utilized data acquired from electronic health records, with clinical predictions and association studies being the most common clinical research tasks that FL was applied to. Only one article exclusively explored the vertical FL setting, while the remaining 33 explored the horizontal FL setting, with only 14 discussing comparisons between single-site (local) and FL (global) analysis.

CONCLUSIONS

The existing FL applications on structured medical data lack sufficient evaluations of clinically meaningful benefits, particularly when compared to single-site analyses. Therefore, it is crucial for future FL applications to prioritize clinical motivations and develop designs and methodologies that can effectively support and aid clinical practice and research.

摘要

目的

近年来,联邦学习(FL)在临床研究中越来越受欢迎,以实现隐私保护的合作。结构化数据是临床数据最常见的形式之一,其数量也在显著增长,尤其是随着电子病历在临床实践中的广泛应用。本综述考察了结构化医疗数据上的 FL 应用,确定了当前的局限性,并讨论了潜在的创新。

材料和方法

我们在 SCOPUS、MEDLINE、Web of Science、Embase 和 CINAHL 这 5 个数据库中进行了检索,以确定将 FL 应用于结构化医疗数据并报告结果的文章,这些文章符合 PRISMA 指南。从数据质量、建模策略和 FL 框架这 3 个主要角度对每一篇选定的出版物进行评估。

结果

在筛选出的 1193 篇论文中,有 34 篇符合纳入标准,每篇文章都包含一项或多项使用 FL 处理结构化临床/医疗数据的研究。其中,有 24 项研究使用了电子健康记录中获取的数据,FL 应用于临床预测和关联研究这两种最常见的临床研究任务。仅有一篇文章专门探讨了垂直 FL 设置,而其余 33 篇文章则探讨了水平 FL 设置,仅有 14 篇文章讨论了单点(局部)和 FL(全局)分析之间的比较。

结论

现有结构化医疗数据上的 FL 应用缺乏对临床有意义的益处的充分评估,尤其是与单点分析相比。因此,未来的 FL 应用应优先考虑临床动机,并开发能够有效支持和辅助临床实践和研究的设计和方法。

相似文献

5
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.青光眼领域的联邦学习:全面综述与未来展望
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.
9

引用本文的文献

本文引用的文献

3
A systematic review of federated learning applications for biomedical data.生物医学数据联合学习应用的系统综述。
PLOS Digit Health. 2022 May 19;1(5):e0000033. doi: 10.1371/journal.pdig.0000033. eCollection 2022 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验