Suppr超能文献

枝状硫化磷钴量子点的分级结构工程:构建用于高效储钠的多维离子传输通道

Hierarchical Architecture Engineering of Branch-Leaf-Shaped Cobalt Phosphosulfide Quantum Dots: Enabling Multi-Dimensional Ion-Transport Channels for High-Efficiency Sodium Storage.

作者信息

Zhao Wenxi, Ma Xiaoqing, Gao Lixia, Wang Xiaodeng, Luo Yongsong, Wang Yan, Li Tingshuai, Ying Binwu, Zheng Dongdong, Sun Shengjun, Liu Qian, Zheng Yinyuan, Sun Xuping, Feng Wenming

机构信息

School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.

出版信息

Adv Mater. 2024 Jan;36(4):e2305190. doi: 10.1002/adma.202305190. Epub 2023 Dec 4.

Abstract

New-fashioned electrode hosts for sodium-ion batteries (SIBs) are elaborately engineered to involve multifunctional active components that can synergistically conquer the critical issues of severe volume deformation and sluggish reaction kinetics of electrodes toward immensely enhanced battery performance. Herein, it is first reported that single-phase CoPS, a new metal phosphosulfide for SIBs, in the form of quantum dots, is successfully introduced into a leaf-shaped conductive carbon nanosheet, which can be further in situ anchored on a 3D interconnected branch-like N-doped carbon nanofiber (N-CNF) to construct a hierarchical branch-leaf-shaped CoPS@C@N-CNF architecture. Both double carbon decorations and ultrafine crystal of the CoPS in-this exquisite architecture hold many significant superiorities, such as favorable train-relaxation, fast interfacial ion-migration, multi-directional migration pathways, and sufficiently exposed Na -storage sites. In consequence, the CoPS@C@N-CNF affords remarkable long-cycle durability over 10 000 cycles at 20.0 A g and superior rate capability. Meanwhile, the CoPS@C@N-CNF-based sodium-ion full cell renders the potential proof-of-feasibility for practical applications in consideration of its high durability over a long-term cyclic lifespan with remarkable reversible capacity. Moreover, the phase transformation mechanism of the CoPS@C@N-CNF and fundamental springhead of the enhanced performance are disclosed by in situ X-ray diffraction, ex situ high-resolution TEM, and theoretical calculations.

摘要

新型钠离子电池(SIBs)电极主体经过精心设计,包含多功能活性成分,这些成分可以协同克服电极严重体积变形和反应动力学迟缓等关键问题,从而极大地提高电池性能。在此,首次报道了一种用于SIBs的新型金属磷硫化物单相CoPS以量子点的形式成功引入叶状导电碳纳米片中,该碳纳米片可进一步原位锚定在三维互连的树枝状氮掺杂碳纳米纤维(N-CNF)上,构建出一种分层树枝叶状的CoPS@C@N-CNF结构。这种精致结构中CoPS的双重碳修饰和超细晶体具有许多显著优势,如良好的应变弛豫、快速的界面离子迁移、多向迁移途径以及充分暴露的钠存储位点。因此,CoPS@C@N-CNF在20.0 A g的电流密度下经过10000次循环仍具有出色的长循环耐久性和优异的倍率性能。同时,基于CoPS@C@N-CNF的钠离子全电池在长期循环寿命中具有高耐久性和显著的可逆容量,为实际应用提供了潜在的可行性证明。此外,通过原位X射线衍射、非原位高分辨率透射电子显微镜和理论计算揭示了CoPS@C@N-CNF的相变机制和性能增强的基本源头。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验