Suppr超能文献

用于可持续锂硫电池的离子通道门控共价有机骨架膜

Ion channel-gated covalent organic framework membrane for sustainable lithium-sulfur batteries.

作者信息

Li Zhongping, Kim Jae-Seung, Moon Hyunseok, Oh Kyeong-Seok, Hou Yuxin, Park Sodam, Ryu Kun, Li Changqing, Seo Jeong-Min, Liu Xiaoming, Baek Jong-Beom, Seo Dong-Hwa, Lee Sang-Young

机构信息

Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China.

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.

出版信息

Natl Sci Rev. 2025 May 16;12(7):nwaf193. doi: 10.1093/nsr/nwaf193. eCollection 2025 Jul.

Abstract

Lithium-sulfur (Li-S) batteries hold promise as a compelling alternative to current state-of-the-art Li-ion batteries due to their high theoretical capacity, low cost and the natural abundance of sulfur. However, the practical realization of Li-S batteries has been plagued by the longstanding trade-off issue between polysulfide shuttle suppression and Li⁺ transport. Here, we report an ion channel-gated covalent organic framework (COF) as an ionic diode membrane strategy to address this conflicting requirement. By tuning the chemical structure of tethered anions, the resulting COF features 1D anionic channels with optimized charge delocalization and pore size. The bulky anions enhance Li⁺ dissociation and conduction while effectively repelling polysulfides dissolved from S cathodes. Additionally, the COF ionic diode mitigates self-discharge and inhibits parasitic reactions. Consequently, Li-S cells assembled with the COF ionic diode improve charge/discharge capacities and cycle life under constrained operating conditions.

摘要

锂硫(Li-S)电池因其高理论容量、低成本和硫的天然丰富性,有望成为当前最先进的锂离子电池的有力替代品。然而,Li-S电池的实际应用一直受到多硫化物穿梭抑制和Li⁺传输之间长期存在的权衡问题的困扰。在此,我们报告了一种离子通道门控共价有机框架(COF)作为一种离子二极管膜策略,以解决这一相互矛盾的要求。通过调整连接阴离子的化学结构,所得的COF具有一维阴离子通道,其电荷离域和孔径得到优化。体积较大的阴离子增强了Li⁺的解离和传导,同时有效排斥了从S阴极溶解的多硫化物。此外,COF离子二极管减轻了自放电并抑制了寄生反应。因此,采用COF离子二极管组装的Li-S电池在受限的操作条件下提高了充/放电容量和循环寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda2/12202149/3b759acfa820/nwaf193fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验