Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany.
Chemphyschem. 2023 Nov 16;24(22):e202300294. doi: 10.1002/cphc.202300294. Epub 2023 Sep 22.
The DNA origami technique allows fast and large-scale production of DNA nanostructures that stand out with an accurate addressability of their anchor points. This enables the precise organization of guest molecules on the surfaces and results in diverse functionalities. However, the compatibility of DNA origami structures with catalytically active matter, a promising pathway to realize autonomous DNA machines, has so far been tested only in the context of bio-enzymatic activity, but not in chemically harsh reaction conditions. The latter are often required for catalytic processes involving high-energy fuels. Here, we provide proof-of-concept data showing that DNA origami structures are stable in 5 % hydrogen peroxide solutions over the course of at least three days. We report a protocol to couple these to platinum nanoparticles and show catalytic activity of the hybrid structures. We suggest that the presented hybrid structures are suitable to realize catalytic nanomachines combined with precisely engineered DNA nanostructures.
DNA 折纸技术允许快速和大规模生产 DNA 纳米结构,其突出特点是其锚定点的精确可寻址性。这使得可以在表面上精确地组织客体分子,并产生各种功能。然而,迄今为止,DNA 折纸结构与催化活性物质的兼容性,这是实现自主 DNA 机器的一条有前途的途径,仅在生物酶活性的背景下进行了测试,而不是在化学苛刻的反应条件下进行测试。后者通常是涉及高能燃料的催化过程所必需的。在这里,我们提供了概念验证数据,表明 DNA 折纸结构在至少三天的时间内能够稳定存在于 5%的过氧化氢溶液中。我们报告了一种将其与铂纳米粒子偶联的方法,并展示了混合结构的催化活性。我们认为所提出的混合结构适合与经过精确设计的 DNA 纳米结构结合来实现催化纳米机器。