Suppr超能文献

种间基因组学为鸮鹦鹉的加速恢复提供了工具。

Species-wide genomics of kākāpō provides tools to accelerate recovery.

机构信息

Genomics Aotearoa, Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, Aotearoa New Zealand.

School of Biological Sciences, University of Canterbury, Christchurch, Aotearoa New Zealand.

出版信息

Nat Ecol Evol. 2023 Oct;7(10):1693-1705. doi: 10.1038/s41559-023-02165-y. Epub 2023 Aug 28.

Abstract

The kākāpō is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kākāpō, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.

摘要

鸮鹦鹉是一种极度濒危、受到严格管理的长寿夜行鹦鹉,仅存在于新西兰。我们生成并分析了近 2018 年初所有个体的全基因组序列数据(169 个个体),以生成高质量的全物种遗传变异调用集。我们利用广泛的长期元数据来量化物种随时间的全基因组多样性,并提出了新的方法,使用概率编程,结合跨越五十年的表型数据集,将表型方差分解为环境和遗传效应,同时量化小种群中的不确定性。我们在先前显示影响其他物种这些特征的基因区域内发现了与生长、疾病易感性、产卵数和卵育力相关的关联。最后,我们生成了预测表型的繁殖值,并说明了在过去 45 年的积极管理下,全基因组多样性和繁殖值多样性以及进化潜力得以维持。我们为鸮鹦鹉的未来保护管理决策提供了新的途径,包括优先考虑个体的转移和监测生长不良或疾病风险高的个体。总的来说,通过明确解决小样本量的挑战,我们为包括基因组数据提供了一个模板,这将为全球的物种恢复努力带来变革。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验