Suppr超能文献

超越三羧酸循环:线粒体钙对氧化磷酸化调节的新见解。

Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation.

机构信息

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, U.S.A.

Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, U.S.A.

出版信息

Biochem Soc Trans. 2023 Aug 31;51(4):1661-1673. doi: 10.1042/BST20230012.

Abstract

While mitochondria oxidative phosphorylation is broadly regulated, the impact of mitochondrial Ca2+ on substrate flux under both physiological and pathological conditions is increasingly being recognized. Under physiologic conditions, mitochondrial Ca2+ enters through the mitochondrial Ca2+ uniporter and boosts ATP production. However, maintaining Ca2+ homeostasis is crucial as too little Ca2+ inhibits adaptation to stress and Ca2+ overload can trigger cell death. In this review, we discuss new insights obtained over the past several years expanding the relationship between mitochondrial Ca2+ and oxidative phosphorylation, with most data obtained from heart, liver, or skeletal muscle. Two new themes are emerging. First, beyond boosting ATP synthesis, Ca2+ appears to be a critical determinant of fuel substrate choice between glucose and fatty acids. Second, Ca2+ exerts local effects on the electron transport chain indirectly, not via traditional allosteric mechanisms. These depend critically on the transporters involved, such as the uniporter or the Na+-Ca2+ exchanger. Alteration of these new relationships during disease can be either compensatory or harmful and suggest that targeting mitochondrial Ca2+ may be of therapeutic benefit during diseases featuring impairments in oxidative phosphorylation.

摘要

虽然线粒体氧化磷酸化广泛受到调节,但线粒体钙对生理和病理条件下底物通量的影响正日益受到关注。在生理条件下,线粒体钙通过线粒体钙单向转运蛋白进入细胞,并促进 ATP 的产生。然而,维持钙稳态至关重要,因为钙不足会抑制对压力的适应,而钙超载会引发细胞死亡。在这篇综述中,我们讨论了过去几年获得的新见解,这些新见解扩展了线粒体钙与氧化磷酸化之间的关系,其中大部分数据来自心脏、肝脏或骨骼肌。有两个新的主题正在出现。首先,除了促进 ATP 合成之外,钙似乎还是葡萄糖和脂肪酸之间燃料底物选择的关键决定因素。其次,钙通过非传统的变构机制间接对电子传递链产生局部影响。这些都取决于涉及的转运蛋白,如单向转运蛋白或 Na+-Ca2+ 交换体。在疾病过程中,这些新关系的改变可能是代偿性的,也可能是有害的,这表明在氧化磷酸化受损的疾病中,靶向线粒体钙可能具有治疗益处。

相似文献

1
Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation.
Biochem Soc Trans. 2023 Aug 31;51(4):1661-1673. doi: 10.1042/BST20230012.
2
Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease.
Physiology (Bethesda). 2024 Sep 1;39(5):0. doi: 10.1152/physiol.00014.2024. Epub 2024 May 7.
4
Adrenergic signaling regulates mitochondrial Ca2+ uptake through Pyk2-dependent tyrosine phosphorylation of the mitochondrial Ca2+ uniporter.
Antioxid Redox Signal. 2014 Aug 20;21(6):863-79. doi: 10.1089/ars.2013.5394. Epub 2014 Jun 25.
5
Mitochondrial calcium and the regulation of metabolism in the heart.
J Mol Cell Cardiol. 2015 Jan;78:35-45. doi: 10.1016/j.yjmcc.2014.10.019. Epub 2014 Nov 7.
6
Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
Biochim Biophys Acta. 2016 Aug;1857(8):1158-1166. doi: 10.1016/j.bbabio.2016.04.003. Epub 2016 Apr 7.
7
Mitochondrial energy production and cation control in myocardial ischaemia and reperfusion.
Basic Res Cardiol. 1993 Sep-Oct;88(5):495-512. doi: 10.1007/BF00795415.
8
Calcium influx through the mitochondrial calcium uniporter holocomplex, MCU.
J Mol Cell Cardiol. 2021 Feb;151:145-154. doi: 10.1016/j.yjmcc.2020.10.015. Epub 2020 Nov 2.
9
A Ca-Dependent Mechanism Boosting Glycolysis and OXPHOS by Activating Aralar-Malate-Aspartate Shuttle, upon Neuronal Stimulation.
J Neurosci. 2022 May 11;42(19):3879-3895. doi: 10.1523/JNEUROSCI.1463-21.2022. Epub 2022 Apr 6.
10
The role of mitochondria in ischemic heart disease.
J Cardiovasc Pharmacol. 1996;28 Suppl 1:S1-10. doi: 10.1097/00005344-199600003-00002.

引用本文的文献

1
Deciphering Mitochondria: Unveiling Their Roles in Mechanosensing and Mechanotransduction.
Research (Wash D C). 2025 Aug 8;8:0816. doi: 10.34133/research.0816. eCollection 2025.
2
Pseudohypoxic stabilization of HIF1α via cyclophilin D suppression promotes melanoma metastasis.
Signal Transduct Target Ther. 2025 Jul 24;10(1):231. doi: 10.1038/s41392-025-02314-8.
4
Calcium Signaling Dynamics in Vascular Cells and Their Dysregulation in Vascular Disease.
Biomolecules. 2025 Jun 18;15(6):892. doi: 10.3390/biom15060892.
6
Integrated Multi-Omics Analysis Reveals Key Regulators of Bovine Oocyte Maturation.
Int J Mol Sci. 2025 Apr 23;26(9):3973. doi: 10.3390/ijms26093973.
8
Mechanism of MCUB-Dependent Inhibition of Mitochondrial Calcium Uptake.
J Cell Physiol. 2025 Apr;240(4):e70033. doi: 10.1002/jcp.70033.
9
Calcium signals shape metabolic control of H3K27ac and H3K18la to regulate EGA.
bioRxiv. 2025 Mar 16:2025.03.14.643362. doi: 10.1101/2025.03.14.643362.
10
Inhibition of Endoplasmic Reticulum Oxidoreductin 1 Modulates Neuronal Excitability and Nociceptive Sensitivity in Mice.
Anesthesiology. 2025 Jul 1;143(1):168-190. doi: 10.1097/ALN.0000000000005453. Epub 2025 Mar 19.

本文引用的文献

1
Absence (of the uniporter) makes the heart grow fonder: The cardiac response to injury adapts after prolonged EMRE inhibition.
J Mol Cell Cardiol. 2023 Aug;181:31-32. doi: 10.1016/j.yjmcc.2023.05.006. Epub 2023 May 25.
2
Distinct effects of cardiac mitochondrial calcium uniporter inactivation via EMRE deletion in the short and long term.
J Mol Cell Cardiol. 2023 Aug;181:33-45. doi: 10.1016/j.yjmcc.2023.05.007. Epub 2023 May 23.
3
Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes.
Basic Res Cardiol. 2023 May 3;118(1):15. doi: 10.1007/s00395-023-00988-1.
4
Mitochondrial calcium cycling in neuronal function and neurodegeneration.
Front Cell Dev Biol. 2023 Jan 24;11:1094356. doi: 10.3389/fcell.2023.1094356. eCollection 2023.
5
Mitochondrial interactome quantitation reveals structural changes in metabolic machinery in the failing murine heart.
Nat Cardiovasc Res. 2022 Sep;1(9):855-866. doi: 10.1038/s44161-022-00127-4. Epub 2022 Sep 9.
6
TMBIM5 is the Ca /H antiporter of mammalian mitochondria.
EMBO Rep. 2022 Dec 6;23(12):e54978. doi: 10.15252/embr.202254978. Epub 2022 Nov 2.
7
Regulation of mitochondrial proteostasis by the proton gradient.
EMBO J. 2022 Aug 16;41(16):e110476. doi: 10.15252/embj.2021110476. Epub 2022 Aug 1.
8
TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy.
Life Sci Alliance. 2022 Jun 17;5(10). doi: 10.26508/lsa.202201478. Print 2022 Oct.
10
The mitochondrial permeability transition: Recent progress and open questions.
FEBS J. 2022 Nov;289(22):7051-7074. doi: 10.1111/febs.16254. Epub 2021 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验