Suppr超能文献

基于可设计绿色材料采用集成学习方案对混合物表面张力估算的见解。

Insights into the estimation of surface tensions of mixtures based on designable green materials using an ensemble learning scheme.

作者信息

Soleimani Reza, Saeedi Dehaghani Amir Hossein

机构信息

Department of Chemical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.

Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.

出版信息

Sci Rep. 2023 Aug 29;13(1):14145. doi: 10.1038/s41598-023-41448-z.

Abstract

Precise estimation of the physical properties of both ionic liquids (ILs) and their mixtures is crucial for engineers to successfully design new industrial processes. Among these properties, surface tension is especially important. It's not only necessary to have knowledge of the properties of pure ILs, but also of their mixtures to ensure optimal utilization in a variety of applications. In this regard, this study aimed to evaluate the effectiveness of Stochastic Gradient Boosting (SGB) tree in modeling surface tensions of binary mixtures of various ionic liquids (ILs) using a comprehensive dataset. The dataset comprised 4010 experimental data points from 48 different ILs and 20 non-IL components, covering a surface tension range of 0.0157-0.0727 N m across a temperature range of 278.15-348.15 K. The study found that the estimated values were in good agreement with the reported experimental data, as evidenced by a high correlation coefficient (R) and a low Mean Relative Absolute Error of greater than 0.999 and less than 0.004, respectively. In addition, the results of the used SGB model were compared to the results of SVM, GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN, three based ANNs, PSO-ANN, GA-ANN, ICA-ANN, TLBO-ANN, ANFIS, ANFIS-ACO, ANFIS-DE, ANFIS-GA, ANFIS-PSO, and MGGP models. In terms of the accuracy, the SGB model is better and provides significantly lower deviations compared to the other techniques. Also, an evaluation was conducted to determine the importance of each variable in predicting surface tension, which revealed that the most influential factor was the mole fraction of IL. In the end, William's plot was utilized to investigate the model's applicability range. As the majority of data points, i.e. 98.5% of the whole dataset, were well within the safety margin, it was concluded that the proposed model had a high applicability domain and its predictions were valid and reliable.

摘要

准确估算离子液体(ILs)及其混合物的物理性质对于工程师成功设计新的工业流程至关重要。在这些性质中,表面张力尤为重要。不仅需要了解纯离子液体的性质,还需要了解它们的混合物的性质,以确保在各种应用中得到最佳利用。在这方面,本研究旨在使用一个综合数据集评估随机梯度提升(SGB)树对各种离子液体(ILs)二元混合物表面张力建模的有效性。该数据集包含来自48种不同离子液体和20种非离子液体成分的4010个实验数据点,在278.15 - 348.15 K的温度范围内,表面张力范围为0.0157 - 0.0727 N/m。研究发现,估计值与报告的实验数据高度吻合,相关系数(R)高,平均相对绝对误差低(分别大于0.999和小于0.004)。此外,将所使用的SGB模型的结果与支持向量机(SVM)、遗传算法 - 支持向量机(GA - SVM)、遗传算法 - 最小二乘支持向量机(GA - LSSVM)、混沌搜索算法 - 最小二乘支持向量机(CSA - LSSVM)、群组方法数据处理算法 - 概率神经网络(GMDH - PNN)、三种基于人工神经网络(ANNs)、粒子群优化 - 人工神经网络(PSO - ANN)、遗传算法 - 人工神经网络(GA - ANN)、独立成分分析 - 人工神经网络(ICA - ANN)、教学学习优化 - 人工神经网络(TLBO - ANN)、自适应神经模糊推理系统(ANFIS)、自适应神经模糊推理系统 - 蚁群算法(ANFIS - ACO)、自适应神经模糊推理系统 - 差分进化算法(ANFIS - DE)、自适应神经模糊推理系统 - 遗传算法(ANFIS - GA)、自适应神经模糊推理系统 - 粒子群优化算法(ANFIS - PSO)和多基因遗传编程(MGGP)模型的结果进行了比较。在准确性方面,SGB模型更好,与其他技术相比偏差显著更低。此外,还进行了一项评估,以确定每个变量在预测表面张力中的重要性,结果表明最有影响的因素是离子液体的摩尔分数。最后,利用威廉姆图来研究模型的适用范围。由于大多数数据点,即整个数据集的98.5%,都在安全范围内,因此得出结论,所提出的模型具有较高的适用域,其预测是有效且可靠的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2006/10465615/036c5d8ef946/41598_2023_41448_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验