Suppr超能文献

采用机器学习模型分析阴道乳杆菌属种类与伊朗不明原因复发性流产和无流产史的生育力妇女之间的关系。

Characterization of vaginal Lactobacillus species as a predictor of fertility among Iranian women with unexplained recurrent miscarriage and fertile women without miscarriage history using machine learning modeling.

机构信息

Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Mol Biol Rep. 2023 Nov;50(11):8785-8797. doi: 10.1007/s11033-023-08745-2. Epub 2023 Aug 29.

Abstract

BACKGROUND

Lactobacillus spp. are the predominant bacteria of the vaginal tract, the alteration of which has been previously linked to miscarriage. Here, we investigated differences between selected vaginal Lactobacillus species of women with a history of recurrent miscarriages and fertile women without a history of miscarriage in Iran.

METHODS AND RESULTS

Vaginal swabs were taken from 29 fertile and 24 infertile women and quantitative real-time PCR (qPCR) assay was used to determine a selection of vaginal Lactobacillus species in both groups. The logistic regression (LR) model, Naive Bayes (NB) model, support vector machine model (SVM), and neural network model (NN) were developed to predict disease outcome by selected variables. LR analysis was used to construct a nomogram indicating predictions of the risk of miscarriage. The most abundant species among the patients were L. rhamnosus, L. ruminis, and L. acidophilus, while L. gasseri, L. vaginalis, L. fermentum, and L. iners were more abundant in healthy subjects. The distribution of L. ruminis, L. iners, and L. rhamnosus was higher in patients, while L. acidophilus, L. gasseri, and L. fermentum were highly distributed among healthy subjects. Higher AUC in predicting the disease outcome was observed for L. gasseri, L. rhamnosus, L. fermentum, and L. plantarum.

CONCLUSION

Our findings provide experimental evidence of vaginal Lactobacillus imbalance in infertile women and a suitable predictor for miscarriage based on the AUC algorithms. Further studies with larger sample size and using high-throughput technologies are needed to boost our understanding of the role of lactobacilli in miscarriage.

摘要

背景

乳杆菌属是阴道的主要细菌,其改变以前与流产有关。在这里,我们研究了伊朗有反复流产史的妇女与无流产史的生育妇女之间选定阴道乳杆菌属的差异。

方法和结果

从 29 名生育妇女和 24 名不育妇女中采集阴道拭子,并用定量实时 PCR(qPCR)检测两组中选定的阴道乳杆菌属。逻辑回归(LR)模型、朴素贝叶斯(NB)模型、支持向量机模型(SVM)和神经网络模型(NN)用于通过选定变量预测疾病结局。LR 分析用于构建一个列线图,指示流产风险的预测。患者中最丰富的物种是 L. rhamnosus、L. ruminis 和 L. acidophilus,而健康受试者中 L. gasseri、L. vaginalis、L. fermentum 和 L. iners 更为丰富。L. ruminis、L. iners 和 L. rhamnosus 的分布在患者中较高,而 L. acidophilus、L. gasseri 和 L. fermentum 在健康受试者中分布较高。预测疾病结局的 AUC 较高的是 L. gasseri、L. rhamnosus、L. fermentum 和 L. plantarum。

结论

我们的研究结果提供了乳杆菌属在不育妇女阴道失衡的实验证据,并基于 AUC 算法为流产提供了合适的预测指标。需要进一步进行更大样本量和使用高通量技术的研究,以提高我们对乳杆菌属在流产中的作用的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验