Suppr超能文献

青少年发育脑龄模型的复制与优化

Replication and Refinement of Brain Age Model for adolescent development.

作者信息

Ray Bhaskar, Chen Jiayu, Fu Zening, Suresh Pranav, Thapaliya Bishal, Farahdel Britny, Calhoun Vince D, Liu Jingyu

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA.

Department of Computer Science, Georgia State University, Atlanta, USA.

出版信息

bioRxiv. 2023 Aug 18:2023.08.16.553472. doi: 10.1101/2023.08.16.553472.

Abstract

The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.

摘要

实际年龄与估计脑龄之间的差异,即脑龄差距,可能作为一种生物标志物来揭示大脑发育和神经精神问题。这激发了许多研究致力于使用不同特征和模型来准确估计脑龄,但其通用性仍有待检验。我们最近的研究表明,传统机器学习模型仅使用多模态脑成像数据中的一小部分选定特征,就能在发育过程中的脑龄预测上取得高精度。在当前研究中,我们在青少年大脑认知发展(ABCD)队列中测试了各种脑龄模型的可重复性。我们提出了一种新的优化模型来提高脑龄预测的稳健性。对从8至22岁年龄范围得出的现有脑龄模型在ABCD参与者基线(9至10岁)和第二年随访(11至12岁)时进行的直接复制测试表明,预训练模型能够捕捉总体平均年龄,但在狭窄范围内精确估计脑龄变化方面失败了。将预训练模型的广泛预测与狭窄年龄范围内的详细信息相结合的优化模型,在基线和第二年数据上分别取得了最佳性能,平均绝对误差为0.49岁和0.48岁。优化模型产生的脑龄差距在基线数据上与参与者的信息处理速度和语言理解能力显示出显著关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4df/10462059/90cf56e11587/nihpp-2023.08.16.553472v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验