Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, Texas, United States.
School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.
J Neurophysiol. 2023 Oct 1;130(4):883-894. doi: 10.1152/jn.00202.2023. Epub 2023 Aug 30.
Estimating the state of tract-specific inputs to spinal motoneurons is critical to understanding movement deficits induced by neurological injury and potential pathways to recovery but remains challenging in humans. In this study, we explored the capability of trans-spinal magnetic stimulation (TSMS) to modulate distal reflex circuits in young adults. TSMS was applied over the thoracic spine to condition soleus H-reflexes involving sacral-level motoneurons. Three TSMS intensities below the motor threshold were applied at interstimulus intervals (ISIs) between 2 and 20 ms relative to peripheral nerve stimulation (PNS). Although low-intensity TSMS yielded no changes in H-reflexes across ISIs, the two higher stimulus intensities yielded two phases of H-reflex inhibition: a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. H-reflex inhibition at 2-ms ISI was uniquely dependent on TSMS intensity. To identify the candidate neural pathways contributing to H-reflex suppression, we constructed a tract-specific conduction time estimation model. Based upon our model, H-reflex inhibition at 11- to 12-ms ISIs is likely a manifestation of orthodromic transmission along the lateral reticulospinal tract. In contrast, the inhibition at 2-ms ISI likely reflects orthodromic transmission along sensory fibers with activation reaching the brain, before descending along motor tracts. Multiple pathways may contribute to H-reflex modulation between 4- and 9-ms ISIs, orthodromic transmission along sensorimotor tracts, and antidromic transmission of multiple motor tracts. Our findings suggest that noninvasive TSMS can influence motoneuron excitability at distal segments and that the contribution of specific tracts to motoneuron excitability may be distinguishable based on conduction velocities. This study explored the capability of trans-spinal magnetic stimulation (TSMS) over the thoracic spine to modulate distal reflex circuits, H-reflexes involving sacral-level motoneurons, in young adults. TSMS induced two inhibition phases of H-reflex across interstimulus intervals (ISIs): a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. An estimated probability model constructed from tract-specific conduction velocities allowed the identification of potential spinal tracts contributing to the changes in motoneuron excitability.
估计特定于脊髓节段的输入状态对理解神经损伤引起的运动缺陷和恢复的潜在途径至关重要,但在人类中仍然具有挑战性。在这项研究中,我们探讨了经皮脊髓磁刺激(TSMS)在年轻成年人中调节远端反射回路的能力。TSMS 施加在胸段脊柱上,以调节涉及骶段运动神经元的比目鱼肌 H 反射。在相对于外周神经刺激(PNS)的 2 到 20 毫秒的刺激间隔(ISI)下,应用了三个低于运动阈值的 TSMS 强度。尽管低强度的 TSMS 在整个 ISI 范围内没有改变 H 反射,但两种更高的刺激强度产生了 H 反射抑制的两个阶段:2 到 9 毫秒 ISI 时相对持久的时期,以及 11 到 12 毫秒 ISI 时的短时期。2 毫秒 ISI 处的 H 反射抑制独特地取决于 TSMS 强度。为了确定有助于 H 反射抑制的候选神经通路,我们构建了一个特定于通路的传导时间估计模型。基于我们的模型,11 到 12 毫秒 ISI 处的 H 反射抑制可能是沿着外侧网状脊髓束的顺行传递的表现。相比之下,2 毫秒 ISI 处的抑制可能反映了感觉纤维的顺行传递,激活到达大脑,然后沿着运动束下行。4 到 9 毫秒 ISI 之间的 H 反射调制、感觉运动束的顺行传递以及多个运动束的逆行传递可能涉及多种途径。我们的发现表明,非侵入性的 TSMS 可以在远端段影响运动神经元的兴奋性,并且特定通路对运动神经元兴奋性的贡献可以根据传导速度来区分。这项研究探讨了经皮脊髓磁刺激(TSMS)在胸段脊柱上调节远端反射回路的能力,涉及年轻成年人的骶段运动神经元的比目鱼肌 H 反射。TSMS 在刺激间隔(ISIs)内诱导 H 反射的两个抑制阶段:2 到 9 毫秒 ISIs 时相对持久的时期,以及 11 到 12 毫秒 ISIs 时的短时期。从特定于通路的传导速度构建的估计概率模型允许识别有助于运动神经元兴奋性变化的潜在脊髓通路。