Yin Wen, Zhou Dongming, Nie Rencan
School of Information Science and Engineering, Yunnan University, Kunming, 650504, China.
J Cancer Res Clin Oncol. 2023 Nov;149(17):15511-15524. doi: 10.1007/s00432-023-05319-4. Epub 2023 Aug 30.
Skin disease is a prevalent type of physical ailment that can manifest in multitude of forms. Many internal diseases can be directly reflected on the skin, and if left unattended, skin diseases can potentially develop into skin cancer. Accurate and effective segmentation of skin lesions, especially melanoma, is critical for early detection and diagnosis of skin cancer. However, the complex color variations, boundary ambiguity, and scale variations in skin lesion regions present significant challenges for precise segmentation.
We propose a novel approach for melanoma segmentation using a dual-branch interactive U-Net architecture. Two distinct sampling strategies are simultaneously integrated into the network, creating a vertical dual-branch structure. Meanwhile, we introduce a novel dual-channel symmetrical convolution block (DCS-Conv), which employs a symmetrical design, enabling the network to exhibit a horizontal dual-branch structure. The combination of the vertical and horizontal distribution of the dual-branch structure enhances both the depth and width of the network, providing greater diversity and rich multiscale cascade features. Additionally, this paper introduces a novel module called the residual fuse-and-select module (RFS module), which leverages self-attention mechanisms to focus on the specific skin cancer features and reduce irrelevant artifacts, further improving the segmentation accuracy.
We evaluated our approach on two publicly skin cancer datasets, ISIC2016 and PH2, and achieved state-of-the-art results, surpassing previous outcomes in terms of segmentation accuracy and overall performance.
Our proposed approach holds tremendous potential to aid dermatologists in clinical decision-making.
皮肤病是一种常见的身体疾病,可表现为多种形式。许多内科疾病可直接反映在皮肤上,若不加以治疗,皮肤病可能会发展成皮肤癌。准确有效地分割皮肤病变,尤其是黑色素瘤,对于皮肤癌的早期检测和诊断至关重要。然而,皮肤病变区域复杂的颜色变化、边界模糊和尺度变化给精确分割带来了重大挑战。
我们提出了一种使用双分支交互式U-Net架构进行黑色素瘤分割的新方法。将两种不同的采样策略同时集成到网络中,创建一个垂直双分支结构。同时,我们引入了一种新型的双通道对称卷积块(DCS-Conv),它采用对称设计,使网络呈现出水平双分支结构。双分支结构的垂直和水平分布相结合,增强了网络的深度和宽度,提供了更大的多样性和丰富的多尺度级联特征。此外,本文还引入了一种名为残差融合与选择模块(RFS模块)的新型模块,该模块利用自注意力机制专注于特定的皮肤癌特征并减少无关伪影,进一步提高了分割精度。
我们在两个公开的皮肤癌数据集ISIC2016和PH2上评估了我们的方法,并取得了领先的结果,在分割精度和整体性能方面超过了之前的成果。
我们提出的方法在协助皮肤科医生进行临床决策方面具有巨大潜力。