Suppr超能文献

布尔基因调控网络的表型控制技术。

Phenotype Control techniques for Boolean gene regulatory networks.

机构信息

Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.

Department of Mathematics, University of Kentucky, Lexington, KY, USA.

出版信息

Bull Math Biol. 2023 Aug 30;85(10):89. doi: 10.1007/s11538-023-01197-6.

Abstract

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What's more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting pathway components that alter the long-term outcomes of the system. This has come to be known as phenotype control theory. In this review we study the interplay of various approaches for controlling gene regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs. The study will also include comparative discussion between the methods, using an established cancer model of T-Cell Large Granular Lymphocyte Leukemia. Further, we explore possible options for making the control search more efficient using reduction and modularity. Finally, we will include challenges presented such as the complexity and the availability of software for implementing each of these control techniques.

摘要

通过布尔网络 (BNs) 对细胞信号转导途径进行建模,已成为过去几十年中分析细胞内通讯的一种既定方法。更重要的是,BNs 提供了一种粗粒度的方法,不仅可以理解分子通讯,还可以针对改变系统长期结果的途径成分。这被称为表型控制理论。在这篇综述中,我们研究了各种控制基因调控网络的方法的相互作用,如:代数方法、控制核、反馈顶点集和稳定基序。该研究还将包括使用 T 细胞大颗粒淋巴细胞白血病的既定癌症模型对方法进行比较讨论。此外,我们还探索了使用简化和模块化使控制搜索更有效的可能选择。最后,我们将包括提出的挑战,例如复杂性和实施这些控制技术中的每一种的软件可用性。

相似文献

1
Phenotype Control techniques for Boolean gene regulatory networks.
Bull Math Biol. 2023 Aug 30;85(10):89. doi: 10.1007/s11538-023-01197-6.
2
Phenotype control techniques for Boolean gene regulatory networks.
bioRxiv. 2023 Apr 18:2023.04.17.537158. doi: 10.1101/2023.04.17.537158.
3
Control of Intracellular Molecular Networks Using Algebraic Methods.
Bull Math Biol. 2019 Dec 23;82(1):2. doi: 10.1007/s11538-019-00679-w.
4
Algebraic model checking for Boolean gene regulatory networks.
Adv Exp Med Biol. 2011;696:113-22. doi: 10.1007/978-1-4419-7046-6_12.
5
Logical Reduction of Biological Networks to Their Most Determinative Components.
Bull Math Biol. 2016 Jul;78(7):1520-45. doi: 10.1007/s11538-016-0193-x. Epub 2016 Jul 14.
6
Reduction of Boolean network models.
J Theor Biol. 2011 Nov 21;289:167-72. doi: 10.1016/j.jtbi.2011.08.042. Epub 2011 Sep 5.
7
BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
BMC Bioinformatics. 2017 Nov 25;18(1):519. doi: 10.1186/s12859-017-1886-3.
8
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
Bioinformatics. 2010 May 15;26(10):1378-80. doi: 10.1093/bioinformatics/btq124. Epub 2010 Apr 7.

引用本文的文献

1
Single-cell profiling of EZH2-mediated immune signaling perturbations in NSCLC.
bioRxiv. 2025 Jul 17:2025.07.12.663845. doi: 10.1101/2025.07.12.663845.
2
Modular Control of Boolean Network Models.
Bull Math Biol. 2025 Jun 3;87(7):91. doi: 10.1007/s11538-025-01471-9.
5
Modular control of Boolean network models.
ArXiv. 2024 Nov 4:arXiv:2401.12477v3.

本文引用的文献

1
Output Stabilizing Control of Complex Biological Networks Based on Boolean Algebra Analysis.
IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):9210-9223. doi: 10.1109/TNNLS.2024.3430906. Epub 2025 May 2.
2
Leveraging network structure in nonlinear control.
NPJ Syst Biol Appl. 2022 Oct 1;8(1):36. doi: 10.1038/s41540-022-00249-2.
3
Uncovering potential interventions for pancreatic cancer patients via mathematical modeling.
J Theor Biol. 2022 Sep 7;548:111197. doi: 10.1016/j.jtbi.2022.111197. Epub 2022 Jun 22.
4
Modeling the Pancreatic Cancer Microenvironment in Search of Control Targets.
Bull Math Biol. 2021 Oct 11;83(11):115. doi: 10.1007/s11538-021-00937-w.
5
The basis of easy controllability in Boolean networks.
Nat Commun. 2021 Sep 1;12(1):5227. doi: 10.1038/s41467-021-25533-3.
7
A REDUCTION METHOD FOR BOOLEAN NETWORK MODELS PROVEN TO CONSERVE ATTRACTORS.
SIAM J Appl Dyn Syst. 2013;12(4):1997-2011. doi: 10.1137/13090537X. Epub 2013 Nov 21.
8
A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma.
Gigascience. 2020 Jul 1;9(7). doi: 10.1093/gigascience/giaa075.
9
Control of Intracellular Molecular Networks Using Algebraic Methods.
Bull Math Biol. 2019 Dec 23;82(1):2. doi: 10.1007/s11538-019-00679-w.
10
Key challenges facing data-driven multicellular systems biology.
Gigascience. 2019 Oct 1;8(10). doi: 10.1093/gigascience/giz127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验