Ahn Byungwook, Kim Yoonsok, Kim Meeree, Yu Hyang Mi, Ahn Jaehun, Sim Eunji, Ji Hyunjin, Gul Hamza Zad, Kim Keun Soo, Ihm Kyuwook, Lee Hyoyoung, Kim Eun Kyu, Lim Seong Chu
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Department of Physics, Hanyang University, Seoul 04763, Republic of Korea.
Nano Lett. 2023 Sep 13;23(17):7927-7933. doi: 10.1021/acs.nanolett.3c01753. Epub 2023 Aug 30.
Transition metal dichalcogenides (TMDs) benefit electrical devices with spin-orbit coupling and valley- and topology-related properties. However, TMD-based devices suffer from traps arising from defect sites inside the channel and the gate oxide interface. Deactivating them requires independent treatments, because the origins are dissimilar. This study introduces a single treatment to passivate defects in a multilayer MoS FET. By applying back-gate bias, protons from an H-TFSI droplet are injected into the MoS, penetrating deeply enough to reach the SiO gate oxide. The characterizations employing low-temperature transport and deep-level transient spectroscopy (DLTS) studies reveal that the trap density of S vacancies in MoS drops to the lowest detection level. The temperature-dependent mobility plot on the SiO substrate resembles that of the h-BN substrate, implying that dangling bonds in SiO are passivated. The carrier mobility on the SiO substrate is enhanced by approximately 2200% after the injection.
过渡金属二硫属化物(TMDs)对具有自旋轨道耦合以及与谷和拓扑相关特性的电子器件有益。然而,基于TMD的器件存在由沟道内部和栅氧化层界面处的缺陷位点产生的陷阱。钝化这些陷阱需要进行独立处理,因为其来源不同。本研究介绍了一种用于钝化多层MoS场效应晶体管(FET)中缺陷的单一处理方法。通过施加背栅偏压,来自H-TFSI液滴的质子被注入到MoS中,穿透深度足以到达SiO栅氧化层。采用低温输运和深能级瞬态谱(DLTS)研究的表征结果表明,MoS中S空位的陷阱密度降至最低检测水平。SiO衬底上与温度相关的迁移率曲线类似于h-BN衬底的曲线,这意味着SiO中的悬空键被钝化。注入后,SiO衬底上的载流子迁移率提高了约2200%。