文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脂联素通过 AMPK 信号通路调节脂质积累和炎症反应,从而促进非酒精性脂肪性肝病的发生。

Asprosin contributes to nonalcoholic fatty liver disease through regulating lipid accumulation and inflammatory response via AMPK signaling.

机构信息

Department of Infectious Disease, The Affiliated People's Hospital of Ningbo University, Ningbo City, Zhejiang Province, China.

Department of Endocrine, The Affiliated People's Hospital of Ningbo University, Ningbo City, Zhejiang Province, China.

出版信息

Immun Inflamm Dis. 2023 Aug;11(8):e947. doi: 10.1002/iid3.947.


DOI:10.1002/iid3.947
PMID:37647445
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10436697/
Abstract

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a primary contributor to liver-related morbidity and mortality. Asprosin has been reported to be implicated in NAFLD. AIMS: This work is to illuminate the effects of Asprosin on NAFLD and the possible downstream mechanism. MATERIALS & METHODS: The weight of NAFLD mice induced by a high-fat diet was detected. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) examined serum Asprosin expression. RT-qPCR and western blot analysis examined Asprosin expression in mice liver tissues. Intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) were implemented. Biochemical kits tested liver enzyme levels in mice serum and liver tissues. Hematoxylin and eosin staining evaluated liver histology. Liver weight was also tested and oil red O staining estimated lipid accumulation. RT-qPCR and western blot analysis analyzed the expression of gluconeogenesis-, fatty acid biosynthesis-, fatty acid oxidation-, and inflammation-associated factors. Besides, western blot analysis examined the expression of AMP-activated protein kinase (AMPK)/p38 signaling-associated factors. In palmitic acid (PA)-treated mice hepatocytes, RT-qPCR and western blot analysis examined Asprosin expression. Lipid accumulation, gluconeogenesis, fatty acid biosynthesis, fatty acid oxidation, and inflammation were appraised again. RESULTS: Asprosin was overexpressed in the serum and liver tissues of NAFLD mice and PA-treated mice hepatocytes. Asprosin interference reduced mice body and liver weight, improved glucose tolerance and diminished liver injury in vivo. Asprosin knockdown alleviated lipid accumulation and inflammatory infiltration both in vitro and in vivo. Additionally, Asprosin absence activated AMPK/p38 signaling and AMPK inhibitor Compound C reversed the impacts of Asprosin on lipid accumulation and inflammatory response. CONCLUSION: Collectively, Asprosin inhibition suppressed lipid accumulation and inflammation to obstruct NAFLD through AMPK/p38 signaling.

摘要

背景:非酒精性脂肪性肝病(NAFLD)是导致与肝脏相关的发病率和死亡率的主要原因。有报道称,天门冬素与 NAFLD 有关。

目的:本研究旨在阐明天门冬素对 NAFLD 的影响及其可能的下游机制。

材料与方法:检测高脂肪饮食诱导的 NAFLD 小鼠的体重。定量逆转录聚合酶链反应(RT-qPCR)检测血清天门冬素表达。RT-qPCR 和 Western blot 分析检测小鼠肝组织中天冬素的表达。进行腹腔内葡萄糖耐量试验(IPGTT)和腹腔内胰岛素耐量试验(IPITT)。生化试剂盒检测小鼠血清和肝组织中的肝酶水平。苏木精和伊红染色评估肝组织学。还检测了肝重和油红 O 染色评估脂质积累。RT-qPCR 和 Western blot 分析检测糖异生、脂肪酸合成、脂肪酸氧化和炎症相关因子的表达。此外,Western blot 分析检测 AMP 激活的蛋白激酶(AMPK)/p38 信号相关因子的表达。在棕榈酸(PA)处理的小鼠肝细胞中,进行 RT-qPCR 和 Western blot 分析检测天门冬素的表达。再次评估脂质积累、糖异生、脂肪酸合成、脂肪酸氧化和炎症。

结果:天门冬素在 NAFLD 小鼠和 PA 处理的小鼠肝细胞的血清和肝组织中过度表达。天冬素干扰减少了小鼠的体重和肝重,改善了体内葡萄糖耐量并减轻了肝损伤。天冬素敲低减轻了体外和体内的脂质积累和炎症浸润。此外,天冬素缺乏激活了 AMPK/p38 信号,而 AMPK 抑制剂 Compound C 逆转了天冬素对脂质积累和炎症反应的影响。

结论:总之,天冬素抑制通过 AMPK/p38 信号抑制脂质积累和炎症反应,从而阻止 NAFLD 的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/4e8ad5f10685/IID3-11-e947-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/2d33a2f5c625/IID3-11-e947-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/f498d85b08a5/IID3-11-e947-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/afe0430b72fa/IID3-11-e947-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/177d2fc765fe/IID3-11-e947-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/5eb8a7d2f241/IID3-11-e947-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/5cc6db31e17d/IID3-11-e947-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/8691c88c248b/IID3-11-e947-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/2cd47363f4f2/IID3-11-e947-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/843cfb88726b/IID3-11-e947-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/0e56fb6a8c24/IID3-11-e947-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/4e8ad5f10685/IID3-11-e947-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/2d33a2f5c625/IID3-11-e947-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/f498d85b08a5/IID3-11-e947-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/afe0430b72fa/IID3-11-e947-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/177d2fc765fe/IID3-11-e947-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/5eb8a7d2f241/IID3-11-e947-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/5cc6db31e17d/IID3-11-e947-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/8691c88c248b/IID3-11-e947-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/2cd47363f4f2/IID3-11-e947-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/843cfb88726b/IID3-11-e947-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/0e56fb6a8c24/IID3-11-e947-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8b/10436697/4e8ad5f10685/IID3-11-e947-g009.jpg

相似文献

[1]
Asprosin contributes to nonalcoholic fatty liver disease through regulating lipid accumulation and inflammatory response via AMPK signaling.

Immun Inflamm Dis. 2023-8

[2]
LB100 ameliorates nonalcoholic fatty liver disease the AMPK/Sirt1 pathway.

World J Gastroenterol. 2019-12-7

[3]
Salvia-Nelumbinis naturalis improves lipid metabolism of NAFLD by regulating the SIRT1/AMPK signaling pathway.

BMC Complement Med Ther. 2022-8-9

[4]
Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways.

J Ethnopharmacol. 2024-7-15

[5]
Asperuloside alleviates lipid accumulation and inflammation in HFD-induced NAFLD via AMPK signaling pathway and NLRP3 inflammasome.

Eur J Pharmacol. 2023-3-5

[6]
Rutin ameliorated lipid metabolism dysfunction of diabetic NAFLD via AMPK/SREBP1 pathway.

Phytomedicine. 2024-4

[7]
Kangtaizhi Granule Alleviated Nonalcoholic Fatty Liver Disease in High-Fat Diet-Fed Rats and HepG2 Cells via AMPK/mTOR Signaling Pathway.

J Immunol Res. 2020

[8]
Pin1 Exacerbates Non-Alcoholic Fatty Liver Disease by Enhancing Its Activity through Binding to ACC1.

Int J Mol Sci. 2024-5-27

[9]
β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signaling pathway.

Biomed Pharmacother. 2021-2

[10]
Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis.

Phytomedicine. 2021-11

引用本文的文献

[1]
Hepatic Olfr734 Deficiency Worsens Hepatic Glucose Metabolism and Induces MASLD in Mice.

Nutrients. 2025-7-25

[2]
Predictive value of asprosin combined with LAP for metabolic dysfunction associated steatotic liver disease in the physical examination population.

Sci Rep. 2025-7-1

[3]
Effect of vitamin D and location of asprosin, spexin and meteorin-like antibodies in the liver of rats with isoproterenol-induced myocardial infarction.

Naunyn Schmiedebergs Arch Pharmacol. 2025-6-28

[4]
Association between neutrophil-to-high-density lipoprotein cholesterol ratio and metabolic dysfunction-associated steatotic liver disease and liver fibrosis in the US population: a nationally representative cross-sectional study using NHANES data from 2017 to 2020.

BMC Gastroenterol. 2024-9-5

[5]
Asprosin: its function as a novel endocrine factor in metabolic-related diseases.

J Endocrinol Invest. 2024-8

[6]
MCC950 Ameliorates Diabetic Muscle Atrophy in Mice by Inhibition of Pyroptosis and Its Synergistic Effect with Aerobic Exercise.

Molecules. 2024-2-4

本文引用的文献

[1]
Androgen receptor, a possible anti-infective therapy target and a potent immune respondent in SARS-CoV-2 spike binding: a computational approach.

Expert Rev Anti Infect Ther. 2023-3

[2]
Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway.

Int J Mol Sci. 2022-12-23

[3]
Fatty Liver Disease-Alcoholic and Non-Alcoholic: Similar but Different.

Int J Mol Sci. 2022-12-19

[4]
Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF-κBp65 Pathway.

Inflammation. 2023-4

[5]
New insights into activation and function of the AMPK.

Nat Rev Mol Cell Biol. 2023-4

[6]
Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets?

Biology (Basel). 2022-8-19

[7]
Current treatment of non-alcoholic fatty liver disease.

J Intern Med. 2022-8

[8]
Implications of Liver Enzymes in the Pathogenesis of Alzheimer's Disease.

J Alzheimers Dis. 2022

[9]
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits.

J Hepatol. 2022-10

[10]
Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索