Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
CDSS Bioanalytical Facility, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
Toxicol Sci. 2023 Oct 30;196(1):112-125. doi: 10.1093/toxsci/kfad085.
To minimize the occurrence of unexpected toxicities in early phase preclinical studies of new drugs, it is vital to understand fundamental similarities and differences between preclinical species and humans. Species differences in sensitivity to acetaminophen (APAP) liver injury have been related to differences in the fraction of the drug that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). We have used physiologically based pharmacokinetic modeling to identify oral doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult. Despite pharmacokinetic and biochemical verification of the equivalent NAPQI insult, serum biomarker and tissue histopathology analyses revealed that mice still exhibited a greater degree of liver injury than rats. Transcriptomic and proteomic analyses highlighted the stronger activation of stress response pathways (including the Nrf2 oxidative stress response and autophagy) in the livers of rats, indicative of a more robust transcriptional adaptation to the equivalent insult. Components of these pathways were also found to be expressed at a higher basal level in the livers of rats compared with both mice and humans. Our findings exemplify a systems approach to understanding differential species sensitivity to hepatotoxicity. Multiomics analysis indicated that rats possess a greater basal and adaptive capacity for hepatic stress responses than mice and humans, with important implications for species selection and human translation in the safety testing of new drug candidates associated with reactive metabolite formation.
为了最大限度地减少新药早期临床前研究中意外毒性的发生,了解临床前物种和人类之间的基本相似性和差异性至关重要。对乙酰氨基酚(APAP)肝损伤的物种敏感性差异与药物中被生物转化为活性代谢物 N-乙酰对苯醌亚胺(NAPQI)的比例有关。我们使用基于生理学的药代动力学模型来确定口服 APAP 剂量(分别为 300 和 1000mg/kg 的小鼠和大鼠),以产生相似的 NAPQI 肝负荷,从而能够在等效化学刺激条件下比较肝组织的时间反应。尽管进行了药代动力学和生物化学验证,以确保 NAPQI 等效损伤,但血清生物标志物和组织组织病理学分析表明,与大鼠相比,小鼠的肝损伤程度仍然更大。转录组学和蛋白质组学分析突出了大鼠肝脏中应激反应途径(包括 Nrf2 氧化应激反应和自噬)的更强激活,表明对等效损伤的转录适应性更强。这些途径的组成部分在大鼠肝脏中的表达水平也高于小鼠和人类。我们的研究结果举例说明了一种理解物种对肝毒性敏感性差异的系统方法。多组学分析表明,与小鼠和人类相比,大鼠具有更大的肝脏应激反应的基础和适应能力,这对与活性代谢物形成相关的新候选药物的安全性测试中的物种选择和人类转化具有重要意义。