Suppr超能文献

自动分割小鼠体态语言以研究刺激诱发的情绪行为。

Automated Segmentation of the Mouse Body Language to Study Stimulus-Evoked Emotional Behaviors.

机构信息

Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto 38068, Italy

Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto 38068, Italy.

出版信息

eNeuro. 2023 Sep 11;10(9). doi: 10.1523/ENEURO.0514-22.2023. Print 2023 Sep.

Abstract

Understanding the neural basis of emotions is a critical step to uncover the biological substrates of neuropsychiatric disorders. To study this aspect in freely behaving mice, neuroscientists have relied on the observation of ethologically relevant bodily cues to infer the affective content of the subject, both in neutral conditions or in response to a stimulus. The best example of that is the widespread assessment of freezing in experiments testing both conditioned and unconditioned fear responses. While robust and powerful, these approaches come at a cost: they are usually confined within selected time windows, accounting for only a limited portion of the complexity of emotional fluctuation. Moreover, they often rely on visual inspection and subjective judgment, resulting in inconsistency across experiments and questionable result interpretations. To overcome these limitations, novel tools are arising, fostering a new avenue in the study of the mouse naturalistic behavior. In this work we developed a computational tool [stimulus-evoked behavioral tracking in 3D for rodents (SEB3R)] to automate and standardize an ethologically driven observation of freely moving mice. Using a combination of machine learning-based behavioral tracking and unsupervised cluster analysis, we identified statistically meaningful postures that could be used for empirical inference on a subsecond scale. We validated the efficacy of this tool in a stimulus-driven test, the whisker nuisance (WN) task, where mice are challenged with a prolonged and invasive whisker stimulation, showing that identified postures can be reliably used as a proxy for stimulus-driven fearful and explorative behaviors.

摘要

理解情绪的神经基础是揭示神经精神障碍生物学基础的关键步骤。为了在自由活动的小鼠中研究这一方面,神经科学家依赖于观察与行为相关的身体线索,以推断主体的情感内容,无论是在中性条件下还是对刺激的反应。最好的例子是广泛评估实验中条件和非条件恐惧反应的冻结。虽然这些方法强大且有效,但它们也有代价:它们通常局限于选定的时间窗口内,只占情感波动复杂性的有限部分。此外,它们通常依赖于视觉检查和主观判断,导致实验之间的不一致和可疑的结果解释。为了克服这些限制,新的工具正在出现,为研究小鼠自然行为开辟了新途径。在这项工作中,我们开发了一种计算工具[用于啮齿动物的三维刺激诱发行为跟踪 (SEB3R)],以自动和标准化对自由移动小鼠的行为进行基于行为的观察。我们使用基于机器学习的行为跟踪和无监督聚类分析相结合的方法,确定了具有统计学意义的姿势,可用于亚秒级的经验推断。我们在刺激驱动的测试——胡须骚扰 (WN) 任务中验证了该工具的功效,在该任务中,小鼠受到长时间和侵入性的胡须刺激的挑战,表明所确定的姿势可以可靠地用作刺激驱动的恐惧和探索行为的代理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5db/10496135/2fcb753bea4f/ENEURO.0514-22.2023_f007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验