Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Nat Commun. 2021 Aug 31;12(1):5188. doi: 10.1038/s41467-021-25420-x.
Studying naturalistic animal behavior remains a difficult objective. Recent machine learning advances have enabled limb localization; however, extracting behaviors requires ascertaining the spatiotemporal patterns of these positions. To provide a link from poses to actions and their kinematics, we developed B-SOiD - an open-source, unsupervised algorithm that identifies behavior without user bias. By training a machine classifier on pose pattern statistics clustered using new methods, our approach achieves greatly improved processing speed and the ability to generalize across subjects or labs. Using a frameshift alignment paradigm, B-SOiD overcomes previous temporal resolution barriers. Using only a single, off-the-shelf camera, B-SOiD provides categories of sub-action for trained behaviors and kinematic measures of individual limb trajectories in any animal model. These behavioral and kinematic measures are difficult but critical to obtain, particularly in the study of rodent and other models of pain, OCD, and movement disorders.
研究自然状态下的动物行为仍然是一个困难的目标。最近的机器学习进展使得肢体定位成为可能;然而,提取行为需要确定这些位置的时空模式。为了将姿势与动作及其运动学联系起来,我们开发了 B-SOiD——一个开源的、无监督的算法,可以在没有用户偏见的情况下识别行为。通过使用新方法对使用姿势模式统计数据进行聚类的机器分类器进行训练,我们的方法实现了大大提高的处理速度和跨主题或实验室概括的能力。B-SOiD 使用帧移位对齐范式克服了以前的时间分辨率障碍。B-SOiD 仅使用单个现成的摄像头,就可为经过训练的行为提供子动作类别,并为任何动物模型中的单个肢体轨迹提供运动学测量。这些行为和运动学测量是难以获得的,但却是至关重要的,特别是在研究啮齿动物和其他疼痛、强迫症和运动障碍模型时。