Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Tencent Jarvis Lab, Shenzhen, Guangdong, 518057, China.
Med Phys. 2021 Jan;48(1):238-252. doi: 10.1002/mp.14581. Epub 2020 Nov 27.
To propose and evaluate a fully automated technique for quantification of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) in breast MRI.
We propose a fully automated method, where after preprocessing, FGT is segmented in T1-weighted, nonfat-saturated MRI. Incorporating an anatomy-driven prior probability for FGT and robust texture descriptors against intensity variations, our method effectively addresses major image processing challenges, including wide variations in breast anatomy and FGT appearance among individuals. Our framework then propagates this segmentation to dynamic contrast-enhanced (DCE)-MRI to quantify BPE within the segmented FGT regions. Axial and sagittal image data from 40 cancer-unaffected women were used to evaluate our proposed method vs a manually annotated reference standard.
High spatial correspondence was observed between the automatic and manual FGT segmentation (mean Dice similarity coefficient 81.14%). The FGT and BPE quantifications (denoted FGT% and BPE%) indicated high correlation (Pearson's r = 0.99 for both) between automatic and manual segmentations. Furthermore, the differences between the FGT% and BPE% quantified using automatic and manual segmentations were low (mean differences: -0.66 ± 2.91% for FGT% and -0.17 ± 1.03% for BPE%). When correlated with qualitative clinical BI-RADS ratings, the correlation coefficient for FGT% was still high (Spearman's ρ = 0.92), whereas that for BPE was lower (ρ = 0.65). Our proposed approach also performed significantly better than a previously validated method for sagittal breast MRI.
Our method demonstrated accurate fully automated quantification of FGT and BPE in both sagittal and axial breast MRI. Our results also suggested the complexity of BPE assessment, demonstrating relatively low correlation between segmentation and clinical rating.
提出并评估一种用于乳腺 MRI 中纤维腺体组织(FGT)和背景实质增强(BPE)定量的全自动技术。
我们提出了一种全自动方法,该方法在预处理后,在 T1 加权、非脂肪饱和 MRI 中对 FGT 进行分割。我们的方法结合了针对 FGT 外观个体差异的解剖结构驱动的先验概率和鲁棒纹理描述符,有效地解决了主要的图像处理挑战,包括乳腺解剖结构和 FGT 外观的广泛变化。然后,我们的框架将此分割传播到动态对比增强(DCE)-MRI 中,以量化分割的 FGT 区域内的 BPE。使用来自 40 名无癌症影响的女性的轴向和矢状图像数据来评估我们提出的方法与手动注释的参考标准之间的对比。
自动和手动 FGT 分割之间观察到高度的空间一致性(平均 Dice 相似系数为 81.14%)。自动和手动分割的 FGT 和 BPE 定量(表示为 FGT%和 BPE%)之间存在高度相关性(Pearson r 分别为 0.99)。此外,使用自动和手动分割定量的 FGT%和 BPE%之间的差异较小(FGT%的平均差异为 -0.66 ± 2.91%,BPE%为 -0.17 ± 1.03%)。当与定性临床 BI-RADS 评分相关时,FGT%的相关系数仍然很高(Spearman ρ=0.92),而 BPE 的相关系数较低(ρ=0.65)。我们提出的方法在矢状乳腺 MRI 中也明显优于先前验证的方法。
我们的方法在矢状和轴向乳腺 MRI 中都实现了 FGT 和 BPE 的准确全自动定量。我们的结果还表明了 BPE 评估的复杂性,表明分割和临床评分之间的相关性相对较低。