Suppr超能文献

使用深度强化学习的冠军级无人机竞速。

Champion-level drone racing using deep reinforcement learning.

机构信息

Robotics and Perception Group, University of Zurich, Zürich, Switzerland.

Intel Labs, Munich, Germany.

出版信息

Nature. 2023 Aug;620(7976):982-987. doi: 10.1038/s41586-023-06419-4. Epub 2023 Aug 30.

Abstract

First-person view (FPV) drone racing is a televised sport in which professional competitors pilot high-speed aircraft through a 3D circuit. Each pilot sees the environment from the perspective of their drone by means of video streamed from an onboard camera. Reaching the level of professional pilots with an autonomous drone is challenging because the robot needs to fly at its physical limits while estimating its speed and location in the circuit exclusively from onboard sensors. Here we introduce Swift, an autonomous system that can race physical vehicles at the level of the human world champions. The system combines deep reinforcement learning (RL) in simulation with data collected in the physical world. Swift competed against three human champions, including the world champions of two international leagues, in real-world head-to-head races. Swift won several races against each of the human champions and demonstrated the fastest recorded race time. This work represents a milestone for mobile robotics and machine intelligence, which may inspire the deployment of hybrid learning-based solutions in other physical systems.

摘要

第一人称视角(FPV)无人机竞速是一项电视运动,专业选手通过 3D 赛道驾驶高速飞机。每位选手都通过安装在飞机上的摄像头传输的视频从他们的无人机视角观看环境。让无人机达到专业选手的水平是具有挑战性的,因为机器人需要在物理极限下飞行,同时仅通过机载传感器估计其在赛道中的速度和位置。在这里,我们介绍了 Swift,这是一个能够在人类世界冠军水平上与物理车辆竞赛的自主系统。该系统将模拟中的深度强化学习(RL)与在物理世界中收集的数据相结合。Swift 与三位人类冠军进行了现实世界的正面比赛,其中包括两个国际联赛的世界冠军。Swift 在与每位人类冠军的比赛中都赢得了几场比赛,并展示了最快的记录比赛时间。这项工作代表了移动机器人和机器智能的一个里程碑,这可能会激发在其他物理系统中部署基于混合学习的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b7/10468397/da8c23fef7c6/41586_2023_6419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验