Yan Yuyang, Li Jiahui, Zaggia Cristina
School of Education, Guangzhou University, Guangzhou, 510006, China.
Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, 35139, Padova, Italy.
Sci Rep. 2025 Jul 2;15(1):23133. doi: 10.1038/s41598-025-05192-w.
This paper explores the use of deep reinforcement learning (DRL) to enable autonomous decision-making and strategy optimization in dynamic graphical games. The proposed approach consists of several key components. First, local performance metrics are defined to reduce computational complexity and minimize information exchange among agents. Second, an online iterative algorithm is developed, leveraging Deep Neural Networks to solve dynamic graphical games with input constraints. This algorithm employs an Actor-Critic framework, where the Actor network learns optimal policies and the Critic network estimates value functions. Third, a distributed policy iteration mechanism allows each intelligent agent to make decisions based solely on local information. Finally, experimental results validate the effectiveness of the proposed method. The findings show that the DRL-based online iterative algorithm significantly improves decision accuracy and convergence speed, reduces computational complexity, and demonstrates strong performance and scalability in addressing optimal control problems in dynamic graphical intelligent games.
本文探讨了使用深度强化学习(DRL)在动态图形游戏中实现自主决策和策略优化。所提出的方法由几个关键组件组成。首先,定义局部性能指标以降低计算复杂度并最小化智能体之间的信息交换。其次,开发了一种在线迭代算法,利用深度神经网络来解决具有输入约束的动态图形游戏。该算法采用了一种演员-评论家框架,其中演员网络学习最优策略,评论家网络估计价值函数。第三,分布式策略迭代机制允许每个智能体仅基于局部信息做出决策。最后,实验结果验证了所提方法的有效性。研究结果表明,基于DRL的在线迭代算法显著提高了决策准确性和收敛速度,降低了计算复杂度,并在解决动态图形智能游戏中的最优控制问题时表现出强大的性能和可扩展性。