Suppr超能文献

人工智能下动态图形游戏的深度强化学习分析

The analysis of deep reinforcement learning for dynamic graphical games under artificial intelligence.

作者信息

Yan Yuyang, Li Jiahui, Zaggia Cristina

机构信息

School of Education, Guangzhou University, Guangzhou, 510006, China.

Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, 35139, Padova, Italy.

出版信息

Sci Rep. 2025 Jul 2;15(1):23133. doi: 10.1038/s41598-025-05192-w.

Abstract

This paper explores the use of deep reinforcement learning (DRL) to enable autonomous decision-making and strategy optimization in dynamic graphical games. The proposed approach consists of several key components. First, local performance metrics are defined to reduce computational complexity and minimize information exchange among agents. Second, an online iterative algorithm is developed, leveraging Deep Neural Networks to solve dynamic graphical games with input constraints. This algorithm employs an Actor-Critic framework, where the Actor network learns optimal policies and the Critic network estimates value functions. Third, a distributed policy iteration mechanism allows each intelligent agent to make decisions based solely on local information. Finally, experimental results validate the effectiveness of the proposed method. The findings show that the DRL-based online iterative algorithm significantly improves decision accuracy and convergence speed, reduces computational complexity, and demonstrates strong performance and scalability in addressing optimal control problems in dynamic graphical intelligent games.

摘要

本文探讨了使用深度强化学习(DRL)在动态图形游戏中实现自主决策和策略优化。所提出的方法由几个关键组件组成。首先,定义局部性能指标以降低计算复杂度并最小化智能体之间的信息交换。其次,开发了一种在线迭代算法,利用深度神经网络来解决具有输入约束的动态图形游戏。该算法采用了一种演员-评论家框架,其中演员网络学习最优策略,评论家网络估计价值函数。第三,分布式策略迭代机制允许每个智能体仅基于局部信息做出决策。最后,实验结果验证了所提方法的有效性。研究结果表明,基于DRL的在线迭代算法显著提高了决策准确性和收敛速度,降低了计算复杂度,并在解决动态图形智能游戏中的最优控制问题时表现出强大的性能和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa07/12223108/db7ff51cbf35/41598_2025_5192_Fig1_HTML.jpg

相似文献

2
Shapley value-driven multi-modal deep reinforcement learning for complex decision-making.
Neural Netw. 2025 Nov;191:107650. doi: 10.1016/j.neunet.2025.107650. Epub 2025 Jun 21.
4
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
7
Stigma Management Strategies of Autistic Social Media Users.
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.
9
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence.
Int J Radiat Oncol Biol Phys. 2025 Jul 15;122(4):1012-1021. doi: 10.1016/j.ijrobp.2025.04.012. Epub 2025 Apr 17.
10
Deep Reinforcement Learning-Based Self-Optimization of Flow Chemistry.
ACS Eng Au. 2025 May 13;5(3):247-266. doi: 10.1021/acsengineeringau.5c00004. eCollection 2025 Jun 18.

本文引用的文献

1
Improved sports image classification using deep neural network and novel tuna swarm optimization.
Sci Rep. 2024 Jun 19;14(1):14121. doi: 10.1038/s41598-024-64826-7.
2
Champion-level drone racing using deep reinforcement learning.
Nature. 2023 Aug;620(7976):982-987. doi: 10.1038/s41586-023-06419-4. Epub 2023 Aug 30.
5
A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.
Sensors (Basel). 2023 Apr 5;23(7):3762. doi: 10.3390/s23073762.
6
Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey.
Sensors (Basel). 2023 Mar 30;23(7):3625. doi: 10.3390/s23073625.
9
Applications of game theory in deep learning: a survey.
Multimed Tools Appl. 2022;81(6):8963-8994. doi: 10.1007/s11042-022-12153-2. Epub 2022 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验