Suppr超能文献

一种自适应的深度强化学习框架使机器人能够在真实环境中表现出类人的性能。

An adaptive deep reinforcement learning framework enables curling robots with human-like performance in real-world conditions.

机构信息

Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.

Machine Learning Group, Department of Computer Science, Berlin Institute of Technology, Berlin, Germany.

出版信息

Sci Robot. 2020 Sep 23;5(46). doi: 10.1126/scirobotics.abb9764.

Abstract

The game of curling can be considered a good test bed for studying the interaction between artificial intelligence systems and the real world. In curling, the environmental characteristics change at every moment, and every throw has an impact on the outcome of the match. Furthermore, there is no time for relearning during a curling match due to the timing rules of the game. Here, we report a curling robot that can achieve human-level performance in the game of curling using an adaptive deep reinforcement learning framework. Our proposed adaptation framework extends standard deep reinforcement learning using temporal features, which learn to compensate for the uncertainties and nonstationarities that are an unavoidable part of curling. Our curling robot, Curly, was able to win three of four official matches against expert human teams [top-ranked women's curling teams and Korea national wheelchair curling team (reserve team)]. These results indicate that the gap between physics-based simulators and the real world can be narrowed.

摘要

冰壶运动可以被视为研究人工智能系统与真实世界相互作用的良好试验台。在冰壶运动中,环境特征在每一时刻都发生变化,并且每次投掷都对比赛结果产生影响。此外,由于比赛的时间规则,在冰壶比赛中没有时间进行重新学习。在这里,我们报告了一种冰壶机器人,它可以使用自适应深度强化学习框架在冰壶运动中实现人类水平的表现。我们提出的自适应框架使用时间特征扩展了标准的深度强化学习,这些特征学习补偿不确定性和非平稳性,这是冰壶运动不可避免的一部分。我们的冰壶机器人 Curly 能够在与专家人类团队(排名最高的女子冰壶队和韩国国家轮椅冰壶队(预备队))的四场正式比赛中赢得三场。这些结果表明,可以缩小基于物理模拟器和真实世界之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验