Suppr超能文献

深度学习中图像分类的预处理技术的实现与高效分析。

Implementation and Efficient Analysis of Preprocessing Techniques in Deep Learning for Image Classification.

机构信息

Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore, India.

出版信息

Curr Med Imaging. 2024;20:e290823220482. doi: 10.2174/1573405620666230829150157.

Abstract

BACKGROUND

Deep learning models have recently been preferred to perform certain image-processing tasks. Recently, with the increasing radiation, heat, and poor lighting conditions, the raw image samples may contain noisy and ambiguous information.

OBJECTIVE

To process these images, the deep learning model requires a large number of data samples to learn the missing information from other clear data samples. This necessitates training the neural network with a huge dataset.

METHODS

The researchers are now attempting to filter and improve such noisy images via preprocessing in order to provide valid and accurate feature information to the neural network layers. However, certain research studies claim that some useful information may be lost when the image is not preprocessed with an appropriate filter or enhancement technique. The MSA (meta-synthesis and analysis) approach is utilized in this work to present the impact of the image processing applications done with and without preprocessing steps. Also, this work summarizes the existing deep learning-based image processing models utilizing or not preprocessing steps in their implementation.

RESULTS

This work has also found that 85% of the existing techniques involve a preprocessing step while developing a deep learning model. However, a maximum accuracy of 96.89% is observed on Sine-Net when it is implemented without a preprocessing and the same model gave 96.85% when implemented with preprocessing.

CONCLUSION

This research provides various research insights on the requirement and non-requirement of preprocessing steps in a deep learning-based implementation.

摘要

背景

深度学习模型最近被优先用于执行某些图像处理任务。最近,由于辐射、热量和照明条件差,原始图像样本可能包含嘈杂和模糊的信息。

目的

为了处理这些图像,深度学习模型需要大量的数据样本从其他清晰的数据样本中学习缺失的信息。这就需要使用庞大的数据集来训练神经网络。

方法

研究人员现在试图通过预处理来过滤和改善这些噪声图像,以便向神经网络层提供有效的、准确的特征信息。然而,某些研究声称,当图像没有使用适当的滤波器或增强技术进行预处理时,可能会丢失一些有用的信息。在这项工作中,使用 MSA(元综合和分析)方法来展示图像处理应用在进行和不进行预处理步骤时的影响。此外,这项工作总结了现有的基于深度学习的图像处理模型,在其实现中是否使用了预处理步骤。

结果

这项工作还发现,在开发深度学习模型时,85%的现有技术都涉及预处理步骤。然而,当在没有预处理的情况下实现 Sine-Net 时,它的最高准确率达到了 96.89%,而当在有预处理的情况下实现相同的模型时,准确率为 96.85%。

结论

这项研究提供了关于在基于深度学习的实现中预处理步骤的需求和非需求的各种研究见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验