Wang Yuelei, Liu Yuqi, Zhao Na, Wang Jueyu, Yang Yue, Cui Daizong, Zhao Min
College of Life Science, Northeast Forestry University, Harbin, China.
Biotechnol J. 2023 Dec;18(12):e2300084. doi: 10.1002/biot.202300084. Epub 2023 Sep 22.
Solar-driven biohybrid systems that produce chemical energy are a valuable objective in ongoing research. However, reactive oxygen species (ROS) that accompany nanoparticle production under light radiation severely affect the efficiency of biohybrid systems. In this study, we successfully constructed a two-hybrid system, Shewanella oneidensis-CdS and S. oneidensis-CdS@Fe O , in a simple, economical, and gentle manner. With the Fe O coating, ROS were considerably eliminated; the hydroxyl radical, superoxide radical, and hydrogen peroxide contents were reduced by 66.7%, 65.4%, and 72%, respectively, during light-driven S. oneidensis-CdS hydrogen production. S. oneidensis-CdS@Fe O showed a 2.6-fold higher hydrogen production (70 h) than S. oneidensis-CdS. Moreover, the S. oneidensis-CdS system produced an additional 367.8 μmol g-dcw (70 h) of hydrogen compared with S. oneidensis during irradiation. The apparent quantum efficiencies of S. oneidensis-CdS and S. oneidensis-CdS@Fe O were 6.2% and 11.5%, respectively, exceeding values previously reported. In conclusion, a stable nanozyme coating effectively inhibited the cytotoxicity of CdS nanoparticles, providing an excellent production environment for bacteria. This study provides a rational strategy for protecting biohybrid systems from ROS toxicity and contributes to more efficient solar energy conversion in the future.
产生化学能的太阳能驱动生物杂交系统是当前研究中的一个重要目标。然而,光辐射下纳米颗粒产生过程中伴随产生的活性氧(ROS)严重影响生物杂交系统的效率。在本研究中,我们以简单、经济且温和的方式成功构建了两种杂交系统,即希瓦氏菌 - 硫化镉(Shewanella oneidensis - CdS)和希瓦氏菌 - 硫化镉@氧化铁(S. oneidensis - CdS@Fe₂O₃)。通过氧化铁涂层,ROS被大量消除;在光驱动希瓦氏菌 - 硫化镉产氢过程中,羟基自由基、超氧自由基和过氧化氢含量分别降低了66.7%、65.4%和72%。希瓦氏菌 - 硫化镉@氧化铁的产氢量(70小时)比希瓦氏菌 - 硫化镉高2.6倍。此外,与光照期间的希瓦氏菌相比,希瓦氏菌 - 硫化镉系统额外产生了367.8 μmol g - dcw(70小时)的氢气。希瓦氏菌 - 硫化镉和希瓦氏菌 - 硫化镉@氧化铁的表观量子效率分别为6.2%和11.5%,超过了先前报道的值。总之,稳定的纳米酶涂层有效抑制了硫化镉纳米颗粒的细胞毒性,为细菌提供了良好的生产环境。本研究为保护生物杂交系统免受ROS毒性提供了合理策略,并有助于未来更高效的太阳能转换。