Suppr超能文献

小分子靶向 VDAC 与索拉非尼、瑞戈非尼或仑伐替尼联用对肝癌细胞增殖和存活的协同作用。

Synergism of small molecules targeting VDAC with sorafenib, regorafenib or lenvatinib on hepatocarcinoma cell proliferation and survival.

机构信息

Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Argentina.

Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Eur J Pharmacol. 2023 Oct 15;957:176034. doi: 10.1016/j.ejphar.2023.176034. Epub 2023 Aug 29.

Abstract

Voltage dependent anion channels (VDAC) in the outer mitochondrial membrane regulate the influx of metabolites that sustain mitochondrial metabolism and the efflux of ATP to the cytosol. Free tubulin and NADH close VDAC. The VDAC-binding small molecules X1 and SC18 modulate mitochondrial metabolism. X1 antagonizes the inhibitory effect of tubulin on VDAC. SC18 occupies an NADH-binding pocket in the inner wall of all VDAC isoforms. Here, we hypothesized that X1 and SC18 have a synergistic effect with sorafenib, regorafenib or lenvatinib to arrest proliferation and induce death in hepatocarcinoma cells. We used colony formation assays to determine cell proliferation, and a combination of calcein/propidium iodide, and trypan blue exclusion to assess cell death in the well differentiated Huh7 and the poorly differentiated SNU-449 cells. Synergism was assessed using the Chou-Talalay method. The inhibitory effect of X1, SC18, sorafenib, regorafenib and lenvatinib was concentration and time dependent. IC calculated from the inhibition of clonogenic capacity were lower than those determined from cell survival. At IC that inhibited cell proliferation, SC18 arrested cells in G0/G1. SC18 at 0.25-2 IC had a synergistic effect with sorafenib on clonogenic inhibition in Huh7 and SNU-449 cells, and with regorafenib or lenvatinib in SNU-449 cells. X1 or SC18 also had synergistic effects with sorafenib on promoting cell death at 0.5-2 IC for SC18 in Huh7 and SNU-449 cells. These results suggest that small molecules targeting VDAC represent a potential new class of drugs to treat liver cancer.

摘要

电压依赖性阴离子通道 (VDAC) 位于线粒体外膜,调节维持线粒体代谢所需的代谢物的流入和 ATP 向细胞质的流出。游离微管蛋白和 NADH 使 VDAC 关闭。VDAC 结合的小分子 X1 和 SC18 调节线粒体代谢。X1 拮抗微管蛋白对 VDAC 的抑制作用。SC18 占据所有 VDAC 同工型内壁的 NADH 结合口袋。在这里,我们假设 X1 和 SC18 与索拉非尼、瑞戈非尼或仑伐替尼具有协同作用,可阻止肝癌细胞增殖并诱导其死亡。我们使用集落形成测定法来确定细胞增殖,并用钙黄绿素/碘化丙啶和台盼蓝排除法组合评估分化良好的 Huh7 和分化较差的 SNU-449 细胞的细胞死亡。使用 Chou-Talalay 方法评估协同作用。X1、SC18、索拉非尼、瑞戈非尼和仑伐替尼的抑制作用具有浓度和时间依赖性。从抑制集落形成能力计算出的 IC 低于从细胞存活中确定的 IC。在抑制细胞增殖的 IC 下,SC18 将细胞阻滞在 G0/G1 期。SC18 在 0.25-2 IC 时与索拉非尼在 Huh7 和 SNU-449 细胞中的集落抑制具有协同作用,与瑞戈非尼或仑伐替尼在 SNU-449 细胞中具有协同作用。在 0.5-2 IC 时,X1 或 SC18 也与索拉非尼在促进 Huh7 和 SNU-449 细胞中的细胞死亡方面具有协同作用。这些结果表明,靶向 VDAC 的小分子代表了治疗肝癌的一类新的潜在药物。

相似文献

1
Synergism of small molecules targeting VDAC with sorafenib, regorafenib or lenvatinib on hepatocarcinoma cell proliferation and survival.
Eur J Pharmacol. 2023 Oct 15;957:176034. doi: 10.1016/j.ejphar.2023.176034. Epub 2023 Aug 29.
2
Small molecules targeting the NADH-binding pocket of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells.
Biomed Pharmacother. 2022 Jun;150:112928. doi: 10.1016/j.biopha.2022.112928. Epub 2022 Apr 18.
5
VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation.
Adv Cancer Res. 2018;138:41-69. doi: 10.1016/bs.acr.2018.02.002. Epub 2018 Mar 2.
7
Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin.
J Biol Chem. 2013 Apr 26;288(17):11920-9. doi: 10.1074/jbc.M112.433847. Epub 2013 Mar 7.
9
VDAC inhibition by tubulin and its physiological implications.
Biochim Biophys Acta. 2012 Jun;1818(6):1526-35. doi: 10.1016/j.bbamem.2011.11.004. Epub 2011 Nov 9.
10

引用本文的文献

1
Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer.
Antioxidants (Basel). 2024 Dec 19;13(12):1563. doi: 10.3390/antiox13121563.
2
Solute Transport through Mitochondrial Porins In Vitro and In Vivo.
Biomolecules. 2024 Mar 4;14(3):303. doi: 10.3390/biom14030303.

本文引用的文献

1
An Overview: The Diversified Role of Mitochondria in Cancer Metabolism.
Int J Biol Sci. 2023 Jan 16;19(3):897-915. doi: 10.7150/ijbs.81609. eCollection 2023.
2
Targeting glycolysis in non-small cell lung cancer: Promises and challenges.
Front Pharmacol. 2022 Nov 30;13:1037341. doi: 10.3389/fphar.2022.1037341. eCollection 2022.
3
Targeting lactate metabolism for cancer immunotherapy - a matter of precision.
Semin Cancer Biol. 2023 Jan;88:32-45. doi: 10.1016/j.semcancer.2022.12.001. Epub 2022 Dec 7.
5
Small molecules targeting the NADH-binding pocket of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells.
Biomed Pharmacother. 2022 Jun;150:112928. doi: 10.1016/j.biopha.2022.112928. Epub 2022 Apr 18.
6
Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
Int J Mol Sci. 2021 Dec 14;22(24):13435. doi: 10.3390/ijms222413435.
7
VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges.
Front Physiol. 2021 Sep 29;12:742839. doi: 10.3389/fphys.2021.742839. eCollection 2021.
8
Targeting Cancer Metabolism and Current Anti-Cancer Drugs.
Adv Exp Med Biol. 2021;1286:15-48. doi: 10.1007/978-3-030-55035-6_2.
10
Hepatocellular carcinoma.
Nat Rev Dis Primers. 2021 Jan 21;7(1):6. doi: 10.1038/s41572-020-00240-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验