State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
Nat Plants. 2023 Sep;9(9):1409-1418. doi: 10.1038/s41477-023-01507-9. Epub 2023 Aug 31.
Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.
小 RNA (sRNA)介导的宿主与病原体之间的跨物种 RNA 干扰 (RNAi) 已得到证实并得到利用。然而,根际微生物种间 RNAi 仍然难以实现。在本研究中,我们开发了一种微生物诱导基因沉默 (MIGS) 技术,利用根际有益真菌哈茨木霉作为 RNAi 工程菌,将两种土传病原菌,即黄萎病菌和尖孢镰刀菌,作为 RNAi 受体。我们首先检测了 MIGS 在诱导黄萎病菌 GFP 沉默中的可行性。然后,通过靶向一个真菌必需基因,我们进一步证明了 MIGS 在抑制真菌生长和保护双子叶棉花和单子叶水稻植株免受黄萎病菌和尖孢镰刀菌侵害方面的有效性。我们还展示了基于选定目标序列的可控制 MIGS 特异性。我们的数据验证了根际真菌中的种间 RNAi 以及 MIGS 在作物保护中的潜在应用。此外,根际有益微生物的原位繁殖将是确保 sRNA 的稳定性和可持续性的最佳选择,避免使用纳米材料来携带化学合成的 sRNA。我们的发现表明,利用基于 MIGS 的生物杀菌剂在防治植物病原菌方面提供了简单直接的设计和实施,而无需宿主遗传修饰。