Suppr超能文献

动态颗粒状水凝胶中内外微凝胶力学平衡控制干细胞活力。

A Balance between Inter- and Intra-Microgel Mechanics Governs Stem Cell Viability in Injectable Dynamic Granular Hydrogels.

机构信息

Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.

出版信息

Adv Mater. 2023 Nov;35(44):e2304212. doi: 10.1002/adma.202304212. Epub 2023 Sep 28.

Abstract

Injectable hydrogels are increasingly explored for the delivery of cells to tissue. These materials exhibit both liquid-like properties, protecting cells from mechanical stress during injection, and solid-like properties, providing a stable 3D engraftment niche. Many strategies for modulating injectable hydrogels tune liquid- and solid-like material properties simultaneously, such that formulation changes designed to improve injectability can reduce stability at the delivery site. The ability to independently tune liquid- and solid-like properties would greatly facilitate formulation development. Here, such a strategy is presented in which cells are ensconced in the pores between microscopic granular hyaluronic acid (HA) hydrogels (microgels), where elasticity is tuned with static covalent intra-microgel crosslinks and flowability with mechanosensitive adamantane-cyclodextrin (AC) inter-microgel crosslinks. Using the same AC-free microgels as a 3D printing support bath, the location of each cell is preserved as it exits the needle, allowing identification of the mechanism driving mechanical trauma-induced cell death. The microgel AC concentration is varied to find the threshold from microgel yielding- to AC interaction-dominated injectability, and this threshold is exploited to fabricate a microgel with better injection-protecting performance. This delivery strategy, and the balance between intra- and inter-microgel properties it reveals, may facilitate the development of new cell injection formulations.

摘要

可注射水凝胶越来越多地被用于将细胞递送到组织中。这些材料表现出液体和固体的双重特性,在注射过程中保护细胞免受机械应力,同时提供稳定的 3D 植入龛位。许多用于调节可注射水凝胶的策略同时调节液体和固体材料的特性,使得旨在提高可注射性的配方变化会降低在递送部位的稳定性。能够独立地调节液体和固体特性将极大地促进配方的开发。在这里,提出了一种策略,即将细胞包裹在微观颗粒透明质酸 (HA) 水凝胶(微凝胶)的孔中,通过静态共价的微凝胶内交联来调节弹性,通过机械敏感的金刚烷-环糊精 (AC) 微凝胶间交联来调节流动性。使用相同的无 AC 微凝胶作为 3D 打印支撑浴,当每个细胞离开针头时,其位置都被保留下来,从而可以识别导致机械创伤诱导细胞死亡的机制。改变微凝胶的 AC 浓度以找到从微凝胶屈服到 AC 相互作用主导的可注射性的阈值,并利用该阈值来制造具有更好注射保护性能的微凝胶。这种递药策略及其揭示的微凝胶内和微凝胶间特性之间的平衡,可能有助于开发新的细胞注射配方。

相似文献

2
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.微凝胶制备技术对颗粒水凝胶性能的影响。
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.
5
Dynamically crosslinked thermoresponsive granular hydrogels.动态交联温敏性颗粒水凝胶。
J Biomed Mater Res A. 2023 Oct;111(10):1577-1587. doi: 10.1002/jbm.a.37556. Epub 2023 May 18.

引用本文的文献

4
Granular hydrogels as brittle yield stress fluids.粒状水凝胶作为脆性屈服应力流体。
bioRxiv. 2025 Feb 27:2025.02.22.639638. doi: 10.1101/2025.02.22.639638.
6
Design approaches for 3D cell culture and 3D bioprinting platforms.3D细胞培养和3D生物打印平台的设计方法。
Biophys Rev (Melville). 2024 May 16;5(2):021304. doi: 10.1063/5.0188268. eCollection 2024 Jun.
8
Nested Biofabrication: Matryoshka-Inspired Intra-Embedded Bioprinting.嵌套式生物制造:嵌套式内嵌入生物打印
Small Methods. 2024 Aug;8(8):e2301325. doi: 10.1002/smtd.202301325. Epub 2023 Dec 19.

本文引用的文献

1
Advances in Injectable Hydrogel Strategies for Heart Failure Treatment.用于心力衰竭治疗的可注射水凝胶策略的进展。
Adv Healthc Mater. 2023 Jul;12(19):e2300029. doi: 10.1002/adhm.202300029. Epub 2023 Mar 27.
3
Self-Healing Injectable Hydrogels for Tissue Regeneration.用于组织再生的自修复可注射水凝胶。
Chem Rev. 2023 Jan 25;123(2):834-873. doi: 10.1021/acs.chemrev.2c00179. Epub 2022 Aug 5.
9
Translational Applications of Hydrogels.水凝胶的转化应用。
Chem Rev. 2021 Sep 22;121(18):11385-11457. doi: 10.1021/acs.chemrev.0c01177. Epub 2021 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验