Qiao Shouchen, Ma Jukui, Wang Yannan, Chen Jingwei, Kang Zhihe, Bian Qianqian, Chen Jinjin, Yin Yumeng, Cao Guozheng, Zhao Guorui, Yang Guohong, Sun Houjun, Yang Yufeng
Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221000, China.
Plants (Basel). 2023 May 22;12(10):2052. doi: 10.3390/plants12102052.
Stem nematode disease can seriously reduce the yield of sweet potato ( (L.) Lam). To explore resistance mechanism to stem nematode in sweet potato, transcriptomes and metabolomes were sequenced and compared between two sweet potato cultivars, the resistant Zhenghong 22 and susceptible Longshu 9, at different times after stem nematode infection. In the transcriptional regulatory pathway, mitogen-activated protein kinase signaling was initiated in Zhenghong 22 at the early stage of infection to activate genes related to ethylene production. Stem nematode infection in Zhenghong 22 also triggered fatty acid metabolism and the activity of respiratory burst oxidase in the metabolic pathway, which further stimulated the glycolytic and shikimic pathways to provide raw materials for secondary metabolite biosynthesis. An integrated analysis of the secondary metabolic regulation pathway in the resistant cultivar Zhenghong 22 revealed the accumulation of tryptophan, phenylalanine, and tyrosine, leading to increased biosynthesis of phenylpropanoids and salicylic acid and enhanced activity of the alkaloid pathway. Stem nematode infection also activated the biosynthesis of terpenoids, abscisic acid, zeatin, indole, and brassinosteroid, resulting in improved resistance to stem nematode. Finally, analyses of the resistance regulation pathway and a weighted gene co-expression network analysis highlighted the importance of the genes and , encoding a leucine-rich receptor-like protein and 1-aminocyclopropane-1-carboxylate synthase, respectively. These are candidate target genes for increasing the strength of the defense response. These results provide new ideas and a theoretical basis for understanding the mechanism of resistance to stem nematode in sweet potato.
茎线虫病会严重降低甘薯((L.) Lam)的产量。为探究甘薯对茎线虫的抗性机制,对两个甘薯品种,即抗病品种郑红22和感病品种陇薯9在茎线虫感染后的不同时间进行了转录组和代谢组测序及比较。在转录调控途径中,郑红22在感染早期启动有丝分裂原激活蛋白激酶信号传导,以激活与乙烯产生相关的基因。郑红22中的茎线虫感染还引发了代谢途径中的脂肪酸代谢和呼吸爆发氧化酶的活性,这进一步刺激了糖酵解和莽草酸途径,为次生代谢物生物合成提供原料。对抗病品种郑红22中次生代谢调控途径的综合分析揭示了色氨酸、苯丙氨酸和酪氨酸的积累,导致苯丙烷类化合物和水杨酸的生物合成增加以及生物碱途径的活性增强。茎线虫感染还激活了萜类化合物、脱落酸、玉米素、吲哚和油菜素内酯的生物合成,从而提高了对茎线虫的抗性。最后,对抗性调控途径的分析和加权基因共表达网络分析突出了分别编码富含亮氨酸的受体样蛋白和1-氨基环丙烷-1-羧酸合酶的基因和的重要性。这些是增强防御反应强度的候选靶基因。这些结果为理解甘薯对茎线虫的抗性机制提供了新的思路和理论基础。