Suppr超能文献

基于噪声脉冲神经网络的视觉感知互信息测度

Mutual information measure of visual perception based on noisy spiking neural networks.

作者信息

Xu Ziheng, Zhai Yajie, Kang Yanmei

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Neurosci. 2023 Aug 16;17:1155362. doi: 10.3389/fnins.2023.1155362. eCollection 2023.

Abstract

Note that images of low-illumination are weak aperiodic signals, while mutual information can be used as an effective measure for the shared information between the input stimulus and the output response of nonlinear systems, thus it is possible to develop novel visual perception algorithm based on the principle of aperiodic stochastic resonance within the frame of information theory. To confirm this, we reveal this phenomenon using the integrate-and-fire neural networks of neurons with noisy binary random signal as input first. And then, we propose an improved visual perception algorithm with the image mutual information as assessment index. The numerical experiences show that the target image can be picked up with more easiness by the maximal mutual information than by the minimum of natural image quality evaluation (NIQE), which is one of the most frequently used indexes. Moreover, the advantage of choosing quantile as spike threshold has also been confirmed. The improvement of this research should provide large convenience for potential applications including video tracking in environments of low illumination.

摘要

请注意,低光照图像是弱非周期信号,而互信息可作为衡量非线性系统输入刺激与输出响应之间共享信息的有效指标,因此有可能在信息论框架内基于非周期随机共振原理开发新型视觉感知算法。为证实这一点,我们首先使用以有噪声的二进制随机信号作为输入的积分发放神经网络来揭示这一现象。然后,我们提出一种以图像互信息为评估指标的改进视觉感知算法。数值实验表明,与最常用的指标之一自然图像质量评价(NIQE)的最小值相比,通过最大互信息能更轻松地提取目标图像。此外,选择分位数作为尖峰阈值的优势也得到了证实。本研究的改进应为包括低光照环境下的视频跟踪在内的潜在应用提供极大便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8f0/10467273/5cd122657a40/fnins-17-1155362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验