School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.
ARC Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia.
Nat Commun. 2019 Oct 29;10(1):4915. doi: 10.1038/s41467-019-12918-8.
Cortical populations produce complex spatiotemporal activity spontaneously without sensory inputs. However, the fundamental computational roles of such spontaneous activity remain unclear. Here, we propose a new neural computation mechanism for understanding how spontaneous activity is actively involved in cortical processing: Computing by Modulating Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate that spontaneous activity patterns with dynamical properties, as found in empirical observations, are modulated or redistributed by external stimuli to give rise to neural responses. We find that this CMSA mechanism of generating neural responses provides profound computational advantages, such as actively speeding up cortical processing. We further reveal that the CMSA mechanism provides a unifying explanation for many experimental findings at both the single-neuron and circuit levels, and that CMSA in response to natural stimuli such as face images is the underlying neurophysiological mechanism of perceptual "bubbles" as found in psychophysical studies.
皮质神经元群体在没有感觉输入的情况下会自发产生复杂的时空活动。然而,这种自发活动的基本计算作用仍不清楚。在这里,我们提出了一种新的神经计算机制,用于理解自发活动如何主动参与皮质处理:通过调节自发活动进行计算(CMSA)。使用具有生理可行性的电路模型,我们证明了具有动力学特性的自发活动模式可以通过外部刺激进行调制或重新分布,从而产生神经反应。我们发现,这种产生神经反应的 CMSA 机制提供了深刻的计算优势,例如主动加速皮质处理。我们进一步揭示,CMSA 机制为单神经元和电路水平的许多实验结果提供了统一的解释,并且对自然刺激(如人脸图像)的 CMSA 是心理物理学研究中发现的感知“泡泡”的潜在神经生理机制。