Suppr超能文献

布朗过程首次穿越波动边界的相变及其对神经编码的启示。

A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

机构信息

Laboratory of Mathematical Physics, The Rockefeller University, New York, NY 10065, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1438-43. doi: 10.1073/pnas.1212479110. Epub 2013 Mar 27.

Abstract

Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H < 1/2, the probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

摘要

首次找到波动量达到给定边界的时间是物理学、生物学、化学、神经科学、经济学和工业工程中一个看似简单但实际意义重大的问题。在需要跨越的边界本身是时间的波动函数的问题中,包括广泛研究的神经编码问题,例如具有不规则输入和内部噪声的神经元积分器。我们表明,高斯-马尔可夫过程在时间 t 首次超过边界的概率 p(t) 作为边界粗糙度的函数(由其赫尔德指数 H 测量)会发生相变。当边界的粗糙度等于过程的粗糙度时,临界点发生,因此对于扩散过程,临界点为 Hc = 1/2。对于更平滑的边界,H > 1/2,概率密度是时间的连续函数。对于更粗糙的边界,H < 1/2,概率集中在具有零测度的 Cantor 样集合上:概率密度变得发散,几乎处处要么为零,要么为无穷大。临界点 Hc = 1/2 对应于神经编码理论中广泛研究的一个案例,其中模型神经元积分的外部输入是一个白噪声过程,就像无关联但精确平衡的兴奋性和抑制性输入的情况一样。我们认为,这种转变对应于一种明显的边界,即率码,其中神经发射概率平滑变化,以及时间码,其中神经元在内部噪声的强度无论如何都在定义明确的时间发射。

相似文献

4
Integrate-and-fire neurons driven by asymmetric dichotomous noise.由非对称二分噪声驱动的积分发放神经元。
Biol Cybern. 2014 Dec;108(6):825-43. doi: 10.1007/s00422-014-0621-7. Epub 2014 Jul 19.
7
Stochastic optimal control of single neuron spike trains.单个神经元放电序列的随机最优控制
J Neural Eng. 2014 Aug;11(4):046004. doi: 10.1088/1741-2560/11/4/046004. Epub 2014 Jun 3.

引用本文的文献

4
Phase transitions in biology: from bird flocks to population dynamics.生物学中的相变:从鸟群到种群动态。
Proc Biol Sci. 2021 Oct 27;288(1961):20211111. doi: 10.1098/rspb.2021.1111. Epub 2021 Oct 20.
5
Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.基于随机共振的脉冲神经网络视觉感知
Front Comput Neurosci. 2020 May 15;14:24. doi: 10.3389/fncom.2020.00024. eCollection 2020.

本文引用的文献

2
Finding the event structure of neuronal spike trains.寻找神经元尖峰序列的事件结构。
Neural Comput. 2011 Sep;23(9):2169-208. doi: 10.1162/NECO_a_00173. Epub 2011 Jun 14.
10
Random walks on complex networks.复杂网络上的随机游走。
Phys Rev Lett. 2004 Mar 19;92(11):118701. doi: 10.1103/PhysRevLett.92.118701. Epub 2004 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验