Suppr超能文献

DeepLN:一种用于预测CT检测到的肺结节的影像特征、恶性程度和病理亚型的多任务人工智能工具。

DeepLN: A Multi-Task AI Tool to Predict the Imaging Characteristics, Malignancy and Pathological Subtypes in CT-Detected Pulmonary Nodules.

作者信息

Wang Chengdi, Shao Jun, Xu Xiuyuan, Yi Le, Wang Gang, Bai Congchen, Guo Jixiang, He Yanqi, Zhang Lei, Yi Zhang, Li Weimin

机构信息

Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.

Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China.

出版信息

Front Oncol. 2022 May 11;12:683792. doi: 10.3389/fonc.2022.683792. eCollection 2022.

Abstract

OBJECTIVES

Distinction of malignant pulmonary nodules from the benign ones based on computed tomography (CT) images can be time-consuming but significant in routine clinical management. The advent of artificial intelligence (AI) has provided an opportunity to improve the accuracy of cancer risk prediction.

METHODS

A total of 8950 detected pulmonary nodules with complete pathological results were retrospectively enrolled. The different radiological manifestations were identified mainly as various nodules densities and morphological features. Then, these nodules were classified into benign and malignant groups, both of which were subdivided into finer specific pathological types. Here, we proposed a deep convolutional neural network for the assessment of lung nodules named DeepLN to identify the radiological features and predict the pathologic subtypes of pulmonary nodules.

RESULTS

In terms of density, the area under the receiver operating characteristic curves (AUCs) of DeepLN were 0.9707 (95% confidence interval, CI: 0.9645-0.9765), 0.7789 (95%CI: 0.7569-0.7995), and 0.8950 (95%CI: 0.8822-0.9088) for the pure-ground glass opacity (pGGO), mixed-ground glass opacity (mGGO) and solid nodules. As for the morphological features, the AUCs were 0.8347 (95%CI: 0.8193-0.8499) and 0.9074 (95%CI: 0.8834-0.9314) for spiculation and lung cavity respectively. For the identification of malignant nodules, our DeepLN algorithm achieved an AUC of 0.8503 (95%CI: 0.8319-0.8681) in the test set. Pertaining to predicting the pathological subtypes in the test set, the multi-task AUCs were 0.8841 (95%CI: 0.8567-0.9083) for benign tumors, 0.8265 (95%CI: 0.8004-0.8499) for inflammation, and 0.8022 (95%CI: 0.7616-0.8445) for other benign ones, while AUCs were 0.8675 (95%CI: 0.8525-0.8813) for lung adenocarcinoma (LUAD), 0.8792 (95%CI: 0.8640-0.8950) for squamous cell carcinoma (LUSC), 0.7404 (95%CI: 0.7031-0.7782) for other malignant ones respectively in the malignant group.

CONCLUSIONS

The DeepLN based on deep learning algorithm represented a competitive performance to predict the imaging characteristics, malignancy and pathologic subtypes on the basis of non-invasive CT images, and thus had great possibility to be utilized in the routine clinical workflow.

摘要

目的

基于计算机断层扫描(CT)图像区分恶性肺结节和良性肺结节可能耗时,但在常规临床管理中意义重大。人工智能(AI)的出现为提高癌症风险预测的准确性提供了契机。

方法

回顾性纳入8950个有完整病理结果的已检测肺结节。不同的放射学表现主要确定为各种结节密度和形态特征。然后,将这些结节分为良性和恶性组,两组再细分为更具体的病理类型。在此,我们提出了一种用于评估肺结节的深度卷积神经网络,名为DeepLN,以识别放射学特征并预测肺结节的病理亚型。

结果

在密度方面,DeepLN在纯磨玻璃影(pGGO)、混合磨玻璃影(mGGO)和实性结节的受试者操作特征曲线(AUC)下面积分别为0.9707(95%置信区间,CI:0.9645 - 0.9765)、0.7789(95%CI:0.7569 - 0.7995)和0.8950(95%CI:0.8822 - 0.9088)。至于形态特征,毛刺征和肺空洞的AUC分别为0.8347(95%CI:0.8193 - 0.8499)和0.9074(95%CI:0.8834 - 0.9314)。对于恶性结节的识别,我们的DeepLN算法在测试集中的AUC为0.8503(95%CI:0.8319 - 0.8681)。关于在测试集中预测病理亚型,良性肿瘤的多任务AUC为0.8841(95%CI:0.8567 - 0.9083),炎症的为0.8265(95%CI:0.8004 - 0.8499),其他良性的为0.8022(9

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffa7/9130467/95b109ea26cb/fonc-12-683792-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验