Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea.
Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.
Eur Radiol. 2024 Mar;34(3):2036-2047. doi: 10.1007/s00330-023-10135-y. Epub 2023 Sep 1.
CT reconstruction algorithms affect radiomics reproducibility. In this study, we evaluate the effect of deep learning-based image conversion on CT reconstruction algorithms.
This study included 78 hepatocellular carcinoma (HCC) patients who underwent four-phase liver CTs comprising non-contrast, late arterial (LAP), portal venous (PVP), and delayed phase (DP), reconstructed using both filtered back projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). PVP images were used to train a convolutional neural network (CNN) model to convert images from FBP to ADMIRE and vice versa. LAP, PVP, and DP images were used for validation and testing. Radiomic features were extracted for each patient with a semi-automatic segmentation tool. We used concordance correlation coefficients (CCCs) to evaluate the radiomics reproducibility for original FBP (oFBP) vs. original ADMIRE (oADMIRE), oFBP vs. converted FBP (cFBP), and oADMIRE vs. converted ADMIRE (cADMIRE).
In the test group including 30 patients, the CCC and proportion of reproducible features (CCC ≥ 0.85) for oFBP vs. oADMIRE were 0.65 and 32.9% (524/1595) for LAP, 0.65 and 35.9% (573/1595) for PVP, and 0.69 and 43.8% (699/1595) for DP. For oFBP vs. cFBP, the values increased to 0.92 and 83.9% (1339/1595) for LAP, 0.89 and 71.0% (1133/1595) for PVP, and 0.90 and 79.7% (1271/1595) for DP. Similarly, for oADMIRE vs. cADMIRE, the values increased to 0.87 and 68.1% (1086/1595) for LAP, 0.91 and 82.1% (1309/1595) for PVP, and 0.89 and 76.2% (1216/1595) for DP.
CNN-based image conversion between CT reconstruction algorithms improved the radiomics reproducibility of HCCs.
This study demonstrates that using a CNN-based image conversion technique significantly improves the reproducibility of radiomic features in HCCs, highlighting its potential for enhancing radiomics research in HCC patients.
Radiomics reproducibility of HCC was improved via CNN-based image conversion between two different CT reconstruction algorithms. This is the first clinical study to demonstrate improvements across a range of radiomic features in HCC patients. This study promotes the reproducibility and generalizability of different CT reconstruction algorithms in radiomics research.
CT 重建算法会影响放射组学的可重复性。本研究旨在评估基于深度学习的图像转换对 CT 重建算法的影响。
本研究纳入了 78 例肝细胞癌(HCC)患者,这些患者接受了包括非对比期、晚期动脉期(LAP)、门静脉期(PVP)和延迟期(DP)的四期肝脏 CT 检查,分别使用滤波反投影(FBP)和高级模型迭代重建(ADMIRE)进行重建。使用 PVP 图像来训练卷积神经网络(CNN)模型,以将 FBP 图像转换为 ADMIRE 图像,反之亦然。使用 LAP、PVP 和 DP 图像进行验证和测试。使用半自动分割工具为每位患者提取放射组学特征。我们使用一致性相关系数(CCCs)来评估原始 FBP(oFBP)与原始 ADMIRE(oADMIRE)、oFBP 与转换后的 FBP(cFBP)以及 oADMIRE 与转换后的 ADMIRE(cADMIRE)之间的放射组学可重复性。
在包括 30 例患者的测试组中,oFBP 与 oADMIRE 的 CCC 和可重复性特征比例(CCC≥0.85)分别为 LAP 期的 0.65 和 32.9%(524/1595)、PVP 期的 0.65 和 35.9%(573/1595)以及 DP 期的 0.69 和 43.8%(699/1595)。对于 oFBP 与 cFBP,其值增加至 LAP 期的 0.92 和 83.9%(1339/1595)、PVP 期的 0.89 和 71.0%(1133/1595)以及 DP 期的 0.90 和 79.7%(1271/1595)。同样,对于 oADMIRE 与 cADMIRE,其值增加至 LAP 期的 0.87 和 68.1%(1086/1595)、PVP 期的 0.91 和 82.1%(1309/1595)以及 DP 期的 0.89 和 76.2%(1216/1595)。
基于 CNN 的 CT 重建算法之间的图像转换可提高 HCC 的放射组学可重复性。
本研究表明,使用基于 CNN 的图像转换技术可显著提高 HCC 中放射组学特征的可重复性,这凸显了其在增强 HCC 患者放射组学研究中的潜力。
通过基于 CNN 的两种不同 CT 重建算法之间的图像转换,改善了 HCC 的放射组学可重复性。这是首例在 HCC 患者中证明放射组学特征在一系列特征上均得到改善的临床研究。本研究促进了不同 CT 重建算法在放射组学研究中的可重复性和通用性。