Suppr超能文献

用于建模多性状关系的因果推理和贝叶斯优化框架-以控制条件下 Brassica napus 种子产量为例的概念验证。

A causal inference and Bayesian optimisation framework for modelling multi-trait relationships-Proof-of-concept using Brassica napus seed yield under controlled conditions.

机构信息

Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom.

Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

出版信息

PLoS One. 2023 Sep 1;18(9):e0290429. doi: 10.1371/journal.pone.0290429. eCollection 2023.

Abstract

The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment.

摘要

提高作物产量是一个主要的育种目标,长期以来,人们一直在研究揭示有助于提高产量的机制和过程。然而,定量预测形态特征之间的相互作用,以及这些特征关系对种子生产的影响仍然是一个挑战。因此,作物品种在多大程度上为特定环境优化其形态结构在很大程度上是未知的。本研究通过将作物育种作为一个优化问题来呈现现有的多种方法的结合,并评估在测试条件下现有品种表现出的最优形态结构的程度。在这项使用温室条件下种植的春油菜和冬油菜植物的概念验证研究中,我们采用因果推理来模拟 27 个形态产量特征对彼此的层次结构影响。我们对种子产量进行贝叶斯优化,以确定和量化理想型植物的形态,预期这些植物的产量高于所研究品种。在测试的生长条件下,我们发现现有的春油菜品种占据了特征空间的最优区域,但在现存的冬油菜品种中,可能存在高产量的策略尚未得到探索。同样的方法可以用于评估任何环境下的特征(形态)空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af1/10473526/21cbaa9bd94e/pone.0290429.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验