Morehouse School of Medicine, Department of Microbiology/Biochemistry/Immunology and Clinical Research Center, Atlanta, Georgia, United States of America.
Septima, Copenhagen, Denmark.
PLoS One. 2023 Sep 1;18(9):e0290375. doi: 10.1371/journal.pone.0290375. eCollection 2023.
Staphylococcus aureus (S. aureus) is known to cause human infections and since the late 1990s, community-onset antibiotic resistant infections (methicillin resistant S. aureus (MRSA)) continue to cause significant infections in the United States. Skin and soft tissue infections (SSTIs) still account for the majority of these in the outpatient setting. Machine learning can predict the location-based risks for community-level S. aureus infections. Multi-year (2002-2016) electronic health records of children <19 years old with S. aureus infections were queried for patient level data for demographic, clinical, and laboratory information. Area level data (Block group) was abstracted from U.S. Census data. A machine learning ecological niche model, maximum entropy (MaxEnt), was applied to assess model performance of specific place-based factors (determined a priori) associated with S. aureus infections; analyses were structured to compare methicillin resistant (MRSA) against methicillin sensitive S. aureus (MSSA) infections. Differences in rates of MRSA and MSSA infections were determined by comparing those which occurred in the early phase (2002-2005) and those in the later phase (2006-2016). Multi-level modeling was applied to identify risks factors for S. aureus infections. Among 16,124 unique patients with community-onset MRSA and MSSA, majority occurred in the most densely populated neighborhoods of Atlanta's metropolitan area. MaxEnt model performance showed the training AUC ranged from 0.771 to 0.824, while the testing AUC ranged from 0.769 to 0.839. Population density was the area variable which contributed the most in predicting S. aureus disease (stratified by CO-MRSA and CO-MSSA) across early and late periods. Race contributed more to CO-MRSA prediction models during the early and late periods than for CO-MSSA. Machine learning accurately predicts which densely populated areas are at highest and lowest risk for community-onset S. aureus infections over a 14-year time span.
金黄色葡萄球菌(S. aureus)已知会导致人类感染,自 20 世纪 90 年代末以来,社区获得性抗生素耐药感染(耐甲氧西林金黄色葡萄球菌(MRSA))继续导致美国发生重大感染。皮肤和软组织感染(SSTIs)仍然占门诊环境中这些感染的大多数。机器学习可以预测社区层面金黄色葡萄球菌感染的基于位置的风险。对 2002-2016 年间年龄<19 岁的金黄色葡萄球菌感染儿童的多年电子健康记录进行了查询,以获取患者的人口统计学、临床和实验室信息。从美国人口普查数据中提取了区域级数据(街区组)。应用机器学习生态位模型,最大熵(MaxEnt),评估与金黄色葡萄球菌感染相关的特定基于位置的因素(事先确定)的模型性能;分析结构旨在比较耐甲氧西林金黄色葡萄球菌(MRSA)和甲氧西林敏感金黄色葡萄球菌(MSSA)感染。通过比较早期(2002-2005 年)和后期(2006-2016 年)发生的感染,确定了 MRSA 和 MSSA 感染率的差异。多水平模型用于确定金黄色葡萄球菌感染的危险因素。在 16124 例独特的社区获得性 MRSA 和 MSSA 患者中,大多数发生在亚特兰大大都市区人口最密集的社区。MaxEnt 模型性能表明,训练 AUC 范围为 0.771 至 0.824,而测试 AUC 范围为 0.769 至 0.839。人口密度是预测金黄色葡萄球菌疾病的最重要区域变量(按社区获得性耐甲氧西林金黄色葡萄球菌(CO-MRSA)和社区获得性甲氧西林敏感金黄色葡萄球菌(CO-MSSA)分层),跨越早期和晚期。在早期和晚期,种族对 CO-MRSA 预测模型的贡献大于 CO-MSSA。机器学习可以准确预测在 14 年的时间跨度内,哪些人口密集地区的社区获得性金黄色葡萄球菌感染风险最高和最低。