Suppr超能文献

尼日利亚主要疟疾媒介物种:利用最大熵模型对冈比亚按蚊复合体及其近缘种的潜在分布进行建模。

Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt.

机构信息

African Regional Centre for Space Science and Technology Education in English (ARCSSTEE), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria.

Department of Geography, University of The Free State, Qwaqwa Campus, Qwaqwa, Phuthaditjhaba, South Africa.

出版信息

PLoS One. 2018 Oct 3;13(10):e0204233. doi: 10.1371/journal.pone.0204233. eCollection 2018.

Abstract

Malaria is a major infectious disease that still affects nearly half of the world's population. Information on spatial distribution of malaria vector species is needed to improve malaria control efforts. In this study we used Maximum Entropy Model (MaxEnt) to estimate the potential distribution of Anopheles gambiae sensu lato and its siblings: Anopheles gambiae sensu stricto, and Anopheles arabiensis in Nigeria. Species occurrence data collected during the period 1900-2010 was used together with 19 bioclimatic, landuse and terrain variables. Results show that these species are currently widespread across all ecological zones. Temperature fluctuation from mean diurnal temperature range, extreme temperature and precipitation conditions, high humidity in dry season from precipitation during warm months, and land use and land cover dynamics have the greatest influence on the current seasonal distribution of the Anopheles species. MaxEnt performed statistically significantly better than random with AUC approximately 0.7 for estimation of the Anopheles species environmental suitability, distribution and variable importance. This model result can contribute to surveillance efforts and control strategies for malaria eradication.

摘要

疟疾是一种主要的传染病,仍影响着全球近一半的人口。为了加强疟疾防控工作,需要了解疟疾病媒物种的空间分布情况。本研究利用最大熵模型(MaxEnt)来估计尼日利亚冈比亚按蚊复合体(包括冈比亚按蚊指名亚种和阿拉伯按蚊)的潜在分布情况。本研究使用了 1900 年至 2010 年期间收集的物种出现数据,并结合了 19 个生物气候、土地利用和地形变量。结果表明,这些物种目前广泛分布于所有生态区。日平均温度范围、极端温度和降水条件的温度波动、温暖月份降水带来的旱季高湿度,以及土地利用和土地覆盖动态变化,对按蚊物种的当前季节性分布有最大影响。MaxEnt 的表现明显优于随机模型,AUC 约为 0.7,可用于估计按蚊物种的环境适宜性、分布和变量重要性。该模型结果有助于疟疾监测工作和消除疟疾的控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78d1/6169898/f1eb44ae668d/pone.0204233.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验