Bandarenka Hanna, Kuzmin Andrey, Baev Alexander, Gupta Sonal, Prasad Paras N
Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York 14260 ,United States.
ACS Omega. 2024 Jul 23;9(31):34036-34045. doi: 10.1021/acsomega.4c04590. eCollection 2024 Aug 6.
In this study, we demonstrate that photoluminescence spectroscopy probing local interaction and dynamics at the fundamental level is a versatile tool for testing and evaluation of semiconducting materials as well as microscale chips based on them. Monocrystalline silicon, which is still an undisputed leader among semiconductors in microelectronics, exhibits very low photoluminescence emission additionally shielded by the metallization and passivating layers at the integrated circuit level. To unleash the full potential of photoluminescence spectroscopy for advanced testing and evaluation of the functional properties of the silicon microchips, new essential conceptually built approaches are required that overcome this problem. Here, we report on the first fundamental research-based application of a potentiometric dye to sense the electric field of operational silicon chips. Furthermore, we demonstrate high sensitivity of crystalline silicon phonon-assisted photoluminescence to local temperature in the 27-64 °C range. Our results show that sensing and mapping of thermal and electric field distributions using photoluminescence can enable precision testing of the structure, function, operation, and security, not only at the component level but also at the level of the entire integrated circuit.
在本研究中,我们证明了在基础层面探测局部相互作用和动力学的光致发光光谱法,是一种用于测试和评估半导体材料以及基于它们的微尺度芯片的通用工具。单晶硅在微电子领域的半导体中仍然是无可争议的领导者,但它表现出非常低的光致发光发射,此外在集成电路层面还受到金属化和钝化层的屏蔽。为了充分发挥光致发光光谱法在先进测试和评估硅微芯片功能特性方面的潜力,需要新的、从概念上构建的基本方法来克服这个问题。在此,我们报告了基于电位染料对工作中的硅芯片电场进行传感的首个基础研究应用。此外,我们证明了晶体硅声子辅助光致发光在27至64°C范围内对局部温度具有高灵敏度。我们的结果表明,利用光致发光对热场和电场分布进行传感和映射,不仅能够在组件层面,而且能够在整个集成电路层面实现对结构、功能、运行和安全性的精确测试。