Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Medicine (Baltimore). 2023 Sep 1;102(35):e34715. doi: 10.1097/MD.0000000000034715.
Aberrant metabolic disorders and significant glycolytic alterations in tumor tissues and cells are hallmarks of breast cancer (BC) progression. This study aims to elucidate the key biomarkers and pathways mediating abnormal glycolysis in breast cancer using bioinformatics analysis. Differential genes expression analysis, gene ontology analysis, Kyoto encyclopedia of genes and genomes analysis, gene set enrichment analyses, and correlation analysis were performed to explore the expression and prognostic implications of glycolysis-related genes. We effectively integrated 4 genes to construct a prognostic model of shorter survival in the high-risk versus low-risk group. The prognostic model showed promising predictive value and may be an integral part of the prognosis of BC. The survival analysis and receiver operating characteristic curves suggested that the signature showed a good predictive performance in both the The Cancer Genome Atlas training set and 2 gene expression omnibus validation sets. Multivariable analysis demonstrated that the 4-gene signature had an independent prognostic value. Furthermore, all calibration curves exhibited robust validity in prognostic prediction. We established an optimized 4-gene signature to clarify the connection between glycolysis and BC, and offered an attractive platform for risk stratification and prognosis predication of BC patients.
肿瘤组织和细胞中异常的代谢紊乱和显著的糖酵解改变是乳腺癌(BC)进展的标志。本研究旨在使用生物信息学分析阐明介导乳腺癌异常糖酵解的关键生物标志物和途径。进行了差异基因表达分析、基因本体分析、京都基因与基因组百科全书分析、基因集富集分析和相关性分析,以探讨糖酵解相关基因的表达和预后意义。我们有效地整合了 4 个基因,构建了一个在高风险与低风险组之间生存时间更短的预后模型。该预后模型显示出有前途的预测价值,可能是 BC 预后的一个组成部分。生存分析和受试者工作特征曲线表明,该特征在癌症基因组图谱训练集和 2 个基因表达综合验证集中均具有良好的预测性能。多变量分析表明,该 4 基因特征具有独立的预后价值。此外,所有校准曲线在预后预测中均表现出稳健的有效性。我们建立了一个优化的 4 基因特征,以阐明糖酵解与 BC 之间的联系,并为 BC 患者的风险分层和预后预测提供了一个有吸引力的平台。