Suppr超能文献

利用综合生物信息学分析鉴定优化的糖酵解相关风险特征以预测乳腺癌的预后。

Identification of an optimized glycolytic-related risk signature for predicting the prognosis in breast cancer using integrated bioinformatic analysis.

机构信息

Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.

Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

出版信息

Medicine (Baltimore). 2023 Sep 1;102(35):e34715. doi: 10.1097/MD.0000000000034715.

Abstract

Aberrant metabolic disorders and significant glycolytic alterations in tumor tissues and cells are hallmarks of breast cancer (BC) progression. This study aims to elucidate the key biomarkers and pathways mediating abnormal glycolysis in breast cancer using bioinformatics analysis. Differential genes expression analysis, gene ontology analysis, Kyoto encyclopedia of genes and genomes analysis, gene set enrichment analyses, and correlation analysis were performed to explore the expression and prognostic implications of glycolysis-related genes. We effectively integrated 4 genes to construct a prognostic model of shorter survival in the high-risk versus low-risk group. The prognostic model showed promising predictive value and may be an integral part of the prognosis of BC. The survival analysis and receiver operating characteristic curves suggested that the signature showed a good predictive performance in both the The Cancer Genome Atlas training set and 2 gene expression omnibus validation sets. Multivariable analysis demonstrated that the 4-gene signature had an independent prognostic value. Furthermore, all calibration curves exhibited robust validity in prognostic prediction. We established an optimized 4-gene signature to clarify the connection between glycolysis and BC, and offered an attractive platform for risk stratification and prognosis predication of BC patients.

摘要

肿瘤组织和细胞中异常的代谢紊乱和显著的糖酵解改变是乳腺癌(BC)进展的标志。本研究旨在使用生物信息学分析阐明介导乳腺癌异常糖酵解的关键生物标志物和途径。进行了差异基因表达分析、基因本体分析、京都基因与基因组百科全书分析、基因集富集分析和相关性分析,以探讨糖酵解相关基因的表达和预后意义。我们有效地整合了 4 个基因,构建了一个在高风险与低风险组之间生存时间更短的预后模型。该预后模型显示出有前途的预测价值,可能是 BC 预后的一个组成部分。生存分析和受试者工作特征曲线表明,该特征在癌症基因组图谱训练集和 2 个基因表达综合验证集中均具有良好的预测性能。多变量分析表明,该 4 基因特征具有独立的预后价值。此外,所有校准曲线在预后预测中均表现出稳健的有效性。我们建立了一个优化的 4 基因特征,以阐明糖酵解与 BC 之间的联系,并为 BC 患者的风险分层和预后预测提供了一个有吸引力的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04b6/10476720/d97028cded1c/medi-102-e34715-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验