Suppr超能文献

利用嗜盐菌高效生产异戊烯醇的代谢工程改造

Metabolic engineering of Halomonas bluephagenesis for high-level mevalonate production from glucose and acetate mixture.

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China.

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China.

出版信息

Metab Eng. 2023 Sep;79:203-213. doi: 10.1016/j.ymben.2023.08.005. Epub 2023 Aug 30.

Abstract

Mevalonate (MVA) plays a crucial role as a building block for the biosynthesis of isoprenoids. In this study, we engineered Halomonas bluephagenesis to efficiently produce MVA. Firstly, by screening MVA synthetases from eight different species, the two efficient candidate modules, specifically NADPH-dependent mvaES from Enterococcus faecalis and NADH-dependent mvaES from Lactobacillus casei, were integrated into the chromosome, leading to the construction of the H. bluephagenesis MVA11. Through the synergetic utilization of glucose and acetate as mixed carbon sources, MVA11 produced 11.2 g/L MVA with a yield of 0.45 g/g (glucose + acetic acid) in the shake flask. Subsequently, 10 beneficial genes out of 50 targets that could promote MVA production were identified using CRISPR interference. The simultaneous repression of rpoN (encoding RNA polymerase sigma-54 factor) and IldD (encoding L-lactate dehydrogenase) increased MVA titer (13.3 g/L) by 19.23% and yield (0.53 g/g (glucose + acetic acid)) by 17.78%, respectively. Furthermore, introducing the non-oxidative glycolysis (NOG) pathway into MVA11 enhanced MVA yield by 12.20%. Ultimately, by combining these strategies, the resultant H. bluephagenesis MVA13/pli-63 produced 13.9 g/L MVA in the shake flask, and the yield increased to 0.56 g/g (glucose + acetic acid), which was the highest reported so far. Under open fed-batch fermentation conditions, H. bluephagenesis MVA13/pli-63 produced 121 g/L of MVA with a yield of 0.42 g/g (glucose + acetic acid), representing the highest reported titer and yield in the bioreactor to date. This study demonstrates that H. bluephagenesis is one of the most favorable chassis for MVA production.

摘要

甲羟戊酸(MVA)作为异戊烯基生物合成的结构单元发挥着关键作用。在本研究中,我们对嗜盐菌进行了工程改造,以高效生产 MVA。首先,通过筛选来自 8 种不同物种的 MVA 合成酶,我们整合了两个高效候选模块,即来自粪肠球菌的 NADPH 依赖性 mvaES 和来自干酪乳杆菌的 NADH 依赖性 mvaES,构建了嗜盐菌 H. bluephagenesis MVA11。通过协同利用葡萄糖和乙酸作为混合碳源,在摇瓶中,MVA11 产生了 11.2 g/L 的 MVA,葡萄糖+乙酸的得率为 0.45 g/g。随后,使用 CRISPR 干扰技术从 50 个可能促进 MVA 生产的目标基因中鉴定出 10 个有益基因。同时抑制 rpoN(编码 RNA 聚合酶 σ-54 因子)和 IldD(编码 L-乳酸脱氢酶)分别将 MVA 浓度(13.3 g/L)提高了 19.23%和 17.78%,得率(葡萄糖+乙酸)提高了 17.78%。此外,将非氧化磷酸戊糖途径(NOG)引入 MVA11 中,将 MVA 得率提高了 12.20%。最终,通过结合这些策略,在摇瓶中,构建的嗜盐菌 H. bluephagenesis MVA13/pli-63 产生了 13.9 g/L 的 MVA,得率提高至 0.56 g/g(葡萄糖+乙酸),这是迄今为止报道的最高水平。在开放补料分批发酵条件下,嗜盐菌 H. bluephagenesis MVA13/pli-63 产生了 121 g/L 的 MVA,得率为 0.42 g/g(葡萄糖+乙酸),这是迄今为止生物反应器中报道的最高浓度和得率。本研究表明,嗜盐菌是生产 MVA 的最有利底盘之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验