Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
Department of Neurology, Henry Ford Health Systems, Detroit, MI, 48202, USA.
J Neuroinflammation. 2023 Sep 2;20(1):201. doi: 10.1186/s12974-023-02880-0.
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
了解灵长类大脑中神经胶质免疫相互作用对于开发皮质损伤(如中风或创伤性脑损伤)的治疗方法至关重要。我们之前的工作表明,间充质衍生的细胞外囊泡(MSC-EVs)通过促进稳态分支状小胶质细胞、减少与损伤相关的神经元过度兴奋以及增强病变周围皮质中的突触可塑性,促进了老年恒河猴初级运动皮层(M1)损伤后的运动功能恢复。通过外科消融覆盖 M1 皮质手部代表区的软脑膜血管,在接受静脉注射载体(veh)或 EVs 的 24 小时和损伤后 14 天,对老年雌性恒河猴的 M1 进行局灶性损伤。本研究使用相同的队列来解决这些损伤和恢复相关的变化如何与小胶质细胞和神经元突触之间的结构和分子相互作用相关。使用多标记免疫组织化学、高分辨率显微镜和基因表达分析,我们定量了突触标志物(VGLUTs、GLURs、VGAT、GABARs)、小胶质细胞标志物(Iba1、P2RY12)和 C1q(一种补体途径蛋白,用于小胶质细胞介导的突触吞噬)在病变周围 M1 和运动前皮质(PMC)中的共表达。我们将该损伤队列与年龄匹配的非损伤对照(ctr)进行了比较。我们的研究结果显示,病变周围区域的兴奋性突触丢失与损伤有关,而 EV 治疗可以改善这种情况。此外,我们还发现 EV 对小胶质细胞和 C1q 表达有区域依赖性影响。在病变周围的 M1 中,EV 治疗和增强的功能恢复与 C1q+肥大小胶质细胞表达的增加有关,这些小胶质细胞被认为在清除碎片和抗炎功能方面发挥作用。在 PMC 中,EV 治疗与减少的 C1q+突触标记和小胶质细胞-树突接触有关。我们的结果表明,EV 治疗可能通过清除病变周围 M1 中的急性损伤来增强突触可塑性,从而防止 PMC 中的慢性炎症和过度突触丢失。这些机制可能有助于保护皮质运动网络的突触和平衡的 M1/PMC 正常突触功能,以支持损伤后的功能恢复。