Suppr超能文献

通过基于脑电图的皮质丘脑生理学测量来量化健康状态和严重脑损伤中的觉醒和意识的方法。

Method for quantifying arousal and consciousness in healthy states and severe brain injury via EEG-based measures of corticothalamic physiology.

作者信息

Assadzadeh S, Annen J, Sanz L, Barra A, Bonin E, Thibaut A, Boly M, Laureys S, Gosseries O, Robinson P A

机构信息

School of Physics, The University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia.

Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.

出版信息

J Neurosci Methods. 2023 Oct 1;398:109958. doi: 10.1016/j.jneumeth.2023.109958. Epub 2023 Sep 1.

Abstract

BACKGROUND

Characterization of normal arousal states has been achieved by fitting predictions of corticothalamic neural field theory (NFT) to electroencephalographic (EEG) spectra to yield relevant physiological parameters.

NEW METHOD

A prior fitting method is extended to distinguish conscious and unconscious states in healthy and brain injured subjects by identifying additional parameters and clusters in parameter space.

RESULTS

Fits of NFT predictions to EEG spectra are used to estimate neurophysiological parameters in healthy and brain injured subjects. Spectra are used from healthy subjects in wake and sleep and from patients with unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and emerged from MCS. Subjects cluster into three groups in parameter space: conscious healthy (wake and REM), sleep, and brain injured. These are distinguished by the difference X-Y between corticocortical (X) and corticothalamic (Y) feedbacks, and by mean neural response rates α and β to incoming spikes. X-Y tracks consciousness in healthy individuals, with smaller values in wake/REM than sleep, but cannot distinguish between brain injuries. Parameters α and β differentiate deep sleep from wake/REM and brain injury.

COMPARISON WITH EXISTING METHODS

Other methods typically rely on laborious clinical assessment, manual EEG scoring, or evaluation of measures like Φ from integrated information theory, for which no efficient method exists. In contrast, the present method can be automated on a personal computer.

CONCLUSION

The method provides a means to quantify consciousness and arousal in healthy and brain injured subjects, but does not distinguish subtypes of brain injury.

摘要

背景

通过将皮质丘脑神经场理论(NFT)的预测与脑电图(EEG)频谱进行拟合以得出相关生理参数,已实现对正常觉醒状态的特征描述。

新方法

扩展了一种先前的拟合方法,通过识别参数空间中的其他参数和聚类来区分健康受试者和脑损伤受试者的清醒和无意识状态。

结果

将NFT预测与EEG频谱进行拟合,以估计健康受试者和脑损伤受试者的神经生理参数。使用了来自清醒和睡眠状态下的健康受试者以及无反应觉醒综合征患者、处于最小意识状态(MCS)以及从MCS中恢复的患者的频谱。受试者在参数空间中聚为三组:清醒健康组(清醒和快速眼动睡眠)、睡眠组和脑损伤组。这些组通过皮质皮质(X)和皮质丘脑(Y)反馈之间的差异X - Y以及对传入尖峰的平均神经反应率α和β来区分。X - Y追踪健康个体的意识,清醒/快速眼动睡眠时的值小于睡眠时,但无法区分脑损伤情况。参数α和β可区分深度睡眠与清醒/快速眼动睡眠以及脑损伤。

与现有方法的比较

其他方法通常依赖于费力的临床评估、手动EEG评分或对诸如来自整合信息理论的Φ等测量值的评估,而对于这些评估不存在有效的方法。相比之下,本方法可在个人计算机上实现自动化。

结论

该方法提供了一种量化健康受试者和脑损伤受试者意识和觉醒的手段,但无法区分脑损伤的亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验