Suppr超能文献

具有空间非线性 ΔB 匀场数组场的随机偏置增强约束切片激发和 180°重聚焦设计。

Stochastic-offset-enhanced restricted slice excitation and 180° refocusing designs with spatially non-linear ΔB shim array fields.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

出版信息

Magn Reson Med. 2023 Dec;90(6):2572-2591. doi: 10.1002/mrm.29827. Epub 2023 Sep 5.

Abstract

PURPOSE

Developing a general framework with a novel stochastic offset strategy for the design of optimized RF pulses and time-varying spatially non-linear ΔB shim array fields for restricted slice excitation and refocusing with refined magnetization profiles within the intervals of the fixed voxels.

METHODS

Our framework uses the decomposition property of the Bloch equations to enable joint design of RF-pulses and shim array fields for restricted slice excitation and refocusing with auto-differentiation optimization. Bloch simulations are performed independently on orthogonal basis vectors, Mx, My, and Mz, which enables designs for arbitrary initial magnetizations. Requirements for refocusing pulse designs are derived from the extended phase graph formalism obviating time-consuming sub-voxel isochromatic simulations to model the effects of crusher gradients. To refine resultant slice-profiles because of voxelwise optimization functions, we propose an algorithm that stochastically offsets spatial points at which loss is computed during optimization.

RESULTS

We first applied our proposed design framework to standard slice-selective excitation and refocusing pulses in the absence of non-linear ΔB shim array fields and compared them against pulses designed with Shinnar-Le Roux algorithm. Next, we demonstrated our technique in a simulated setup of fetal brain imaging in pregnancy for restricted-slice excitation and refocusing of the fetal brain.

CONCLUSIONS

Our proposed framework for optimizing RF pulse and time-varying spatially non-linear ΔB shim array fields achieve high fidelity restricted-slice excitation and refocusing for fetal MRI, which could enable zoomed fast-spin-echo-MRI and other applications.

摘要

目的

开发一种通用框架,提出一种新的随机偏移策略,用于设计优化的射频脉冲和时变空间非线性 ΔB 匀场阵列场,以在固定体素间隔内对受限切片进行激发和重聚焦,并在磁化率分布内实现精细的磁化率分布。

方法

我们的框架利用布洛赫方程的分解特性,通过自动微分优化,实现了 RF 脉冲和匀场阵列场的联合设计,用于受限切片的激发和重聚焦。布洛赫模拟分别在正交基矢量 Mx、My 和 Mz 上进行,这使得任意初始磁化率的设计成为可能。从扩展相位图形式主义中推导出重聚焦脉冲设计的要求,避免了耗时的亚体素等频线模拟来模拟破碎机梯度的影响。为了因为体素优化函数而细化得到的切片轮廓,我们提出了一种算法,即在优化过程中随机偏移计算损耗的空间点。

结果

我们首先将我们提出的设计框架应用于不存在非线性 ΔB 匀场阵列场的标准切片选择激发和重聚焦脉冲,并将其与 Shinnar-Le Roux 算法设计的脉冲进行了比较。接下来,我们在妊娠胎儿脑成像的模拟设置中展示了我们的技术,用于胎儿脑的受限切片激发和重聚焦。

结论

我们提出的用于优化射频脉冲和时变空间非线性 ΔB 匀场阵列场的框架实现了高保真的胎儿 MRI 受限切片激发和重聚焦,这可能使变焦快速自旋回波-MRI 和其他应用成为可能。

相似文献

2
Selective RF excitation designs enabled by time-varying spatially non-linear ΔB fields with applications in fetal MRI.
Magn Reson Med. 2022 May;87(5):2161-2177. doi: 10.1002/mrm.29114. Epub 2021 Dec 21.
5
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
7
Myocardial perfusion mapping with intra-arterial spin labeling: Optimization of the labeling efficiency.
Magn Reson Med. 2025 Oct;94(4):1663-1671. doi: 10.1002/mrm.30589. Epub 2025 Jun 4.
8
Multiband Fast Spin Echo on portable low-field systems.
Magn Reson Med. 2025 Aug 11. doi: 10.1002/mrm.70036.
9
Linear Bloch-Siegert phase-encoded low-field MRI: RF coils, pulse sequence, and image reconstruction.
NMR Biomed. 2024 Dec;37(12):e5245. doi: 10.1002/nbm.5245. Epub 2024 Aug 26.

引用本文的文献

2
Artificial intelligence for neuro MRI acquisition: a review.
MAGMA. 2024 Jul;37(3):383-396. doi: 10.1007/s10334-024-01182-7. Epub 2024 Jun 26.
3
Multiphoton parallel transmission (MP-pTx): Pulse design methods and numerical validation.
Magn Reson Med. 2024 Oct;92(4):1376-1391. doi: 10.1002/mrm.30116. Epub 2024 Jun 20.
4
High-resolution anatomical imaging of the fetal brain with a reduced field of view using outer volume suppression.
Magn Reson Med. 2024 Oct;92(4):1556-1567. doi: 10.1002/mrm.30147. Epub 2024 May 4.

本文引用的文献

1
Enhanced detection of fetal pose in 3D MRI by Deep Reinforcement Learning with physical structure priors on anatomy.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:396-405. doi: 10.1007/978-3-030-59725-2_38. Epub 2020 Sep 29.
2
Selective RF excitation designs enabled by time-varying spatially non-linear ΔB fields with applications in fetal MRI.
Magn Reson Med. 2022 May;87(5):2161-2177. doi: 10.1002/mrm.29114. Epub 2021 Dec 21.
3
Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.
Magn Reson Med. 2022 Apr;87(4):1914-1922. doi: 10.1002/mrm.29106. Epub 2021 Dec 10.
4
Joint Design of RF and Gradient Waveforms via Auto-differentiation for 3D Tailored Excitation in MRI.
IEEE Trans Med Imaging. 2021 Dec;40(12):3305-3314. doi: 10.1109/TMI.2021.3083104. Epub 2021 Nov 30.
5
Fetal Pose Estimation in Volumetric MRI using a 3D Convolution Neural Network.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:403-410. doi: 10.1007/978-3-030-32251-9_44. Epub 2019 Oct 10.
6
Magnetic Resonance RF Pulse Design by Optimal Control With Physical Constraints.
IEEE Trans Med Imaging. 2018 Feb;37(2):461-472. doi: 10.1109/TMI.2017.2758391. Epub 2017 Oct 2.
8
Fetal MRI: A Technical Update with Educational Aspirations.
Concepts Magn Reson Part A Bridg Educ Res. 2014 Nov;43(6):237-266. doi: 10.1002/cmr.a.21321.
9
A 32-channel combined RF and B0 shim array for 3T brain imaging.
Magn Reson Med. 2016 Jan;75(1):441-51. doi: 10.1002/mrm.25587. Epub 2015 Feb 17.
10
Integrated RF/shim coil array for parallel reception and localized B0 shimming in the human brain.
Neuroimage. 2014 Dec;103:235-240. doi: 10.1016/j.neuroimage.2014.09.052. Epub 2014 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验