Suppr超能文献

使用三维卷积神经网络进行容积磁共振成像中的胎儿姿势估计

Fetal Pose Estimation in Volumetric MRI using a 3D Convolution Neural Network.

作者信息

Xu Junshen, Zhang Molin, Turk Esra Abaci, Zhang Larry, Grant Ellen, Ying Kui, Golland Polina, Adalsteinsson Elfar

机构信息

Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.

Department of Engineering Physics, Tsinghua University, Beijing, China.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11767:403-410. doi: 10.1007/978-3-030-32251-9_44. Epub 2019 Oct 10.

Abstract

The performance and diagnostic utility of magnetic resonance imaging (MRI) in pregnancy is fundamentally constrained by fetal motion. Motion of the fetus, which is unpredictable and rapid on the scale of conventional imaging times, limits the set of viable acquisition techniques to single-shot imaging with severe compromises in signal-to-noise ratio and diagnostic contrast, and frequently results in unacceptable image quality. Surprisingly little is known about the characteristics of fetal motion during MRI and here we propose and demonstrate methods that exploit a growing repository of MRI observations of the gravid abdomen that are acquired at low spatial resolution but relatively high temporal resolution and over long durations (10-30 minutes). We estimate fetal pose per frame in MRI volumes of the pregnant abdomen via deep learning algorithms that detect key fetal landmarks. Evaluation of the proposed method shows that our framework achieves quantitatively an average error of 4.47 mm and 96.4% accuracy (with error less than 10 mm). Fetal pose estimation in MRI time series yields novel means of quantifying fetal movements in health and disease, and enables the learning of kinematic models that may enhance prospective mitigation of fetal motion artifacts during MRI acquisition.

摘要

磁共振成像(MRI)在孕期的性能及诊断效用从根本上受到胎儿运动的限制。胎儿的运动在传统成像时间尺度上是不可预测且快速的,这将可行的采集技术限制为单次成像,导致信噪比和诊断对比度严重受损,并且常常导致图像质量无法接受。令人惊讶的是,对于MRI期间胎儿运动的特征了解甚少,在此我们提出并展示了一些方法,这些方法利用了不断增加的妊娠腹部MRI观察库,这些观察是在低空间分辨率但相对高时间分辨率且长时间(10 - 30分钟)内获取的。我们通过检测关键胎儿标志点的深度学习算法,估计妊娠腹部MRI容积中每一帧的胎儿姿势。对所提出方法的评估表明,我们的框架在定量上实现了平均误差4.47毫米和96.4%的准确率(误差小于10毫米)。MRI时间序列中的胎儿姿势估计产生了量化健康和疾病状态下胎儿运动的新方法,并能够学习运动学模型,这可能会在MRI采集期间增强对胎儿运动伪影的前瞻性减轻。

相似文献

1
Fetal Pose Estimation in Volumetric MRI using a 3D Convolution Neural Network.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:403-410. doi: 10.1007/978-3-030-32251-9_44. Epub 2019 Oct 10.
2
Enhanced detection of fetal pose in 3D MRI by Deep Reinforcement Learning with physical structure priors on anatomy.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:396-405. doi: 10.1007/978-3-030-59725-2_38. Epub 2020 Sep 29.
3
A deep learning approach for pose estimation from volumetric OCT data.
Med Image Anal. 2018 May;46:162-179. doi: 10.1016/j.media.2018.03.002. Epub 2018 Mar 10.
4
Estimation of in-scanner head pose changes during structural MRI using a convolutional neural network trained on eye tracker video.
Magn Reson Imaging. 2021 Sep;81:101-108. doi: 10.1016/j.mri.2021.06.010. Epub 2021 Jun 18.
5
6
STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:197-206. doi: 10.1007/978-3-030-87234-2_19. Epub 2021 Sep 21.
8
PETS-Nets: Joint Pose Estimation and Tissue Segmentation of Fetal Brains Using Anatomy-Guided Networks.
IEEE Trans Med Imaging. 2024 Mar;43(3):1006-1017. doi: 10.1109/TMI.2023.3327295. Epub 2024 Mar 5.
10
Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging.
IEEE Trans Med Imaging. 2020 Nov;39(11):3523-3534. doi: 10.1109/TMI.2020.2998600. Epub 2020 Oct 28.

引用本文的文献

1
Measuring and interpreting individual differences in fetal, infant, and toddler neurodevelopment.
Dev Cogn Neurosci. 2025 Mar 1;73:101539. doi: 10.1016/j.dcn.2025.101539.
3
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain MRI.
IEEE Trans Med Imaging. 2024 Nov;43(11):4029-4040. doi: 10.1109/TMI.2024.3411989. Epub 2024 Nov 4.
5
Fetal MRI: what's new? A short review.
Eur Radiol Exp. 2023 Aug 10;7(1):41. doi: 10.1186/s41747-023-00358-5.
6
Real-time fetal brain tracking for functional fetal MRI.
Magn Reson Med. 2023 Dec;90(6):2306-2320. doi: 10.1002/mrm.29803. Epub 2023 Jul 19.
7
Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging.
World J Clin Cases. 2023 Jun 6;11(16):3725-3735. doi: 10.12998/wjcc.v11.i16.3725.
8
STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:197-206. doi: 10.1007/978-3-030-87234-2_19. Epub 2021 Sep 21.
9
ENRICHing medical imaging training sets enables more efficient machine learning.
J Am Med Inform Assoc. 2023 May 19;30(6):1079-1090. doi: 10.1093/jamia/ocad055.
10
NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI.
IEEE Trans Med Imaging. 2023 Jun;42(6):1707-1719. doi: 10.1109/TMI.2023.3236216. Epub 2023 Jun 1.

本文引用的文献

1
Fetal motion estimation from noninvasive cardiac signal recordings.
Physiol Meas. 2016 Nov;37(11):2003-2023. doi: 10.1088/0967-3334/37/11/2003. Epub 2016 Oct 24.
2
Methods of fetal movement counting and the detection of fetal compromise.
J Obstet Gynaecol. 2008 Feb;28(2):147-54. doi: 10.1080/01443610801912618.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验