Suppr超能文献

在 3T 下胎儿 HASTE 成像中运动退化图像的自动检测和再获取。

Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.

机构信息

Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2022 Apr;87(4):1914-1922. doi: 10.1002/mrm.29106. Epub 2021 Dec 10.

Abstract

PURPOSE

Fetal brain Magnetic Resonance Imaging suffers from unpredictable and unconstrained fetal motion that causes severe image artifacts even with half-Fourier single-shot fast spin echo (HASTE) readouts. This work presents the implementation of a closed-loop pipeline that automatically detects and reacquires HASTE images that were degraded by fetal motion without any human interaction.

METHODS

A convolutional neural network that performs automatic image quality assessment (IQA) was run on an external GPU-equipped computer that was connected to the internal network of the MRI scanner. The modified HASTE pulse sequence sent each image to the external computer, where the IQA convolutional neural network evaluated it, and then the IQA score was sent back to the sequence. At the end of the HASTE stack, the IQA scores from all the slices were sorted, and only slices with the lowest scores (corresponding to the slices with worst image quality) were reacquired.

RESULTS

The closed-loop HASTE acquisition framework was tested on 10 pregnant mothers, for a total of 73 acquisitions of our modified HASTE sequence. The IQA convolutional neural network, which was successfully employed by our modified sequence in real time, achieved an accuracy of 85.2% and area under the receiver operator characteristic of 0.899.

CONCLUSION

The proposed acquisition/reconstruction pipeline was shown to successfully identify and automatically reacquire only the motion degraded fetal brain HASTE slices in the prescribed stack. This minimizes the overall time spent on HASTE acquisitions by avoiding the need to repeat the entire stack if only few slices in the stack are motion-degraded.

摘要

目的

胎儿脑部磁共振成像(MRI)受到不可预测和不受约束的胎儿运动的影响,即使使用半傅里叶单次激发快速自旋回波(HASTE)读取技术,也会导致严重的图像伪影。本研究介绍了一种闭环流水线的实现,该流水线可以自动检测和重新获取因胎儿运动而降级的 HASTE 图像,而无需任何人工交互。

方法

在连接到 MRI 扫描仪内部网络的外部 GPU 计算机上运行了一个执行自动图像质量评估(IQA)的卷积神经网络。修改后的 HASTE 脉冲序列将每张图像发送到外部计算机,IQA 卷积神经网络在外部计算机上对其进行评估,然后将 IQA 分数发回序列。在 HASTE 堆栈的末尾,对所有切片的 IQA 分数进行排序,仅重新获取分数最低(对应图像质量最差的切片)的切片。

结果

闭环 HASTE 采集框架在 10 名孕妇中进行了测试,共采集了 73 次我们修改后的 HASTE 序列。成功实时应用于我们修改后的序列的 IQA 卷积神经网络的准确率为 85.2%,接收器操作特性曲线下的面积为 0.899。

结论

所提出的采集/重建流水线被证明可以成功识别并自动重新获取规定堆栈中仅因运动而降级的胎儿脑 HASTE 切片。如果堆栈中只有少数切片因运动而降级,则可以避免重复整个堆栈,从而最大限度地减少 HASTE 采集的总时间。

相似文献

1
Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.
Magn Reson Med. 2022 Apr;87(4):1914-1922. doi: 10.1002/mrm.29106. Epub 2021 Dec 10.
6
MR imaging of the fetus by a HASTE sequence.
AJR Am J Roentgenol. 1997 Feb;168(2):513-9. doi: 10.2214/ajr.168.2.9016238.

引用本文的文献

4
Recent trends in AI applications for pelvic MRI: a comprehensive review.
Radiol Med. 2024 Sep;129(9):1275-1287. doi: 10.1007/s11547-024-01861-4. Epub 2024 Aug 3.
5
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain MRI.
IEEE Trans Med Imaging. 2024 Nov;43(11):4029-4040. doi: 10.1109/TMI.2024.3411989. Epub 2024 Nov 4.
7
Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model.
AJNR Am J Neuroradiol. 2023 Oct;44(10):1191-1200. doi: 10.3174/ajnr.A7978. Epub 2023 Aug 31.
9
Real-time fetal brain tracking for functional fetal MRI.
Magn Reson Med. 2023 Dec;90(6):2306-2320. doi: 10.1002/mrm.29803. Epub 2023 Jul 19.
10
Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging.
World J Clin Cases. 2023 Jun 6;11(16):3725-3735. doi: 10.12998/wjcc.v11.i16.3725.

本文引用的文献

1
Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:386-395. doi: 10.1007/978-3-030-59725-2_37. Epub 2020 Sep 29.
2
Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging.
IEEE Trans Med Imaging. 2020 Nov;39(11):3523-3534. doi: 10.1109/TMI.2020.2998600. Epub 2020 Oct 28.
3
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.
Neuroimage. 2020 Feb 1;206:116324. doi: 10.1016/j.neuroimage.2019.116324. Epub 2019 Nov 6.
6
Markerless high-frequency prospective motion correction for neuroanatomical MRI.
Magn Reson Med. 2019 Jul;82(1):126-144. doi: 10.1002/mrm.27705. Epub 2019 Feb 28.
7
Current state of MRI of the fetal brain in utero.
J Magn Reson Imaging. 2019 Mar;49(3):632-646. doi: 10.1002/jmri.26316. Epub 2018 Oct 24.
8
Early-Emerging Sulcal Patterns Are Atypical in Fetuses with Congenital Heart Disease.
Cereb Cortex. 2019 Jul 22;29(8):3605-3616. doi: 10.1093/cercor/bhy235.
9
Automated image quality evaluation of T -weighted liver MRI utilizing deep learning architecture.
J Magn Reson Imaging. 2018 Mar;47(3):723-728. doi: 10.1002/jmri.25779. Epub 2017 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验