Suppr超能文献

用于冠状动脉狭窄分类和诊断的冠状动脉计算机断层扫描血管造影的人工智能评估

Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis.

作者信息

Lee Dan-Ying, Chang Chun-Chin, Ko Chieh-Fu, Lee Yin-Hao, Tsai Yi-Lin, Chou Ruey-Hsing, Chang Ting-Yung, Guo Shu-Mei, Huang Po-Hsun

机构信息

Department of Internal Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei City, Taiwan.

Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan.

出版信息

Eur J Clin Invest. 2024 Jan;54(1):e14089. doi: 10.1111/eci.14089. Epub 2023 Sep 5.

Abstract

BACKGROUND

Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time-consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows.

METHODS

In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model.

RESULTS

The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001).

CONCLUSIONS

The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.

摘要

背景

使用冠状动脉计算机断层扫描血管造影(CCTA)排除阻塞性冠状动脉疾病(CAD)既耗时又具有挑战性。本研究开发了一种深度学习(DL)模型,以协助在CCTA上检测阻塞性CAD,从而简化工作流程。

方法

总共从曲面多平面重组CCTA图像中提取了2929个DICOM文件和7945个标签。采用了改进的Inception V3模型。为验证人工智能(AI)模型,两名心脏病专家对CCTA上的冠状动脉狭窄分类进行了标记和判定。该模型经过训练,可将冠状动脉分为狭窄程度<50%和≥50%的二元狭窄分类。以定量冠状动脉造影(QCA)的共识结果作为参考标准,通过计算患者和血管层面的Cohen卡方系数,比较了AI模型和CCTA放射科阅片者的表现。使用净重新分类指数评估DL模型的净效益。

结果

AI模型在患者和血管层面的诊断准确率分别为92.3%和88.4%。与CCTA放射科阅片者相比,AI模型在患者和血管层面的二元狭窄分类上具有更好的一致性(Cohen卡方系数:分别为0.79对0.39和0.77对0.40,p < 0.0001)。AI模型还表现出显著改善的模型区分度和重新分类能力(净重新分类指数 = 0.350;Z = 4.194;p < 0.001)。

结论

所开发的AI模型能够识别阻塞性CAD,且模型结果与QCA结果具有良好的相关性。将该模型纳入CCTA报告系统可能会改善工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验