Suppr超能文献

基于时空信息变换学习的空间大地测量数据地震预警

Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning.

作者信息

Tong Yuyan, Hong Renhao, Zhang Ze, Aihara Kazuyuki, Chen Pei, Liu Rui, Chen Luonan

机构信息

School of Mathematics, South China University of Technology, Guangzhou 510640, China.

Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.

出版信息

Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2302275120. doi: 10.1073/pnas.2302275120. Epub 2023 Sep 5.

Abstract

Alerting for imminent earthquakes is particularly challenging due to the high nonlinearity and nonstationarity of geodynamical phenomena. In this study, based on spatiotemporal information (STI) transformation for high-dimensional real-time data, we developed a model-free framework, i.e., real-time spatiotemporal information transformation learning (RSIT), for extending the nonlinear and nonstationary time series. Specifically, by transforming high-dimensional information of the global navigation satellite system into one-dimensional dynamics via the STI strategy, RSIT efficiently utilizes two criteria of the transformed one-dimensional dynamics, i.e., unpredictability and instability. Such two criteria contemporaneously signal a potential critical transition of the geodynamical system, thereby providing early-warning signals of possible upcoming earthquakes. RSIT explores both the spatial and temporal dynamics of real-world data on the basis of a solid theoretical background in nonlinear dynamics and delay-embedding theory. The effectiveness of RSIT was demonstrated on geodynamical data of recent earthquakes from a number of regions across at least 4 y and through further comparison with existing methods.

摘要

由于地球动力学现象具有高度的非线性和非平稳性,对即将发生的地震进行预警极具挑战性。在本研究中,基于对高维实时数据的时空信息(STI)变换,我们开发了一种无模型框架,即实时时空信息变换学习(RSIT),用于扩展非线性和非平稳时间序列。具体而言,通过时空信息变换(STI)策略将全球导航卫星系统的高维信息转换为一维动力学,RSIT有效地利用了变换后的一维动力学的两个准则,即不可预测性和不稳定性。这两个准则同时表明地球动力学系统可能发生临界转变,从而提供可能即将发生地震的预警信号。RSIT在非线性动力学和延迟嵌入理论的坚实理论背景基础上,探索了现实世界数据的时空动力学。通过对至少4年来自多个地区的近期地震地球动力学数据进行分析,并与现有方法进行进一步比较,验证了RSIT的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cad/10500272/febd3ca5e669/pnas.2302275120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验