Suppr超能文献

一种用于自动胚胎形态参数分析的人工智能算法显示与着床潜能呈正相关。

An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential.

机构信息

The Medical School for International Health and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Fairtility Ltd., Tel Aviv, Israel.

出版信息

Sci Rep. 2023 Sep 5;13(1):14617. doi: 10.1038/s41598-023-40923-x.

Abstract

Blastocyst selection is primarily based on morphological scoring systems and morphokinetic data. These methods involve subjective grading and time-consuming techniques. Artificial intelligence allows for objective and quick blastocyst selection. In this study, 608 blastocysts were selected for transfer using morphokinetics and Gardner criteria. Retrospectively, morphometric parameters of blastocyst size, inner cell mass (ICM) size, ICM-to-blastocyst size ratio, and ICM shape were automatically measured by a semantic segmentation neural network model. The model was trained on 1506 videos with 102 videos for validation with no overlap between the ICM and trophectoderm models. Univariable logistic analysis found blastocyst size and ICM-to-blastocyst size ratio to be significantly associated with implantation potential. Multivariable regression analysis, adjusted for woman age, found blastocyst size to be significantly associated with implantation potential. The odds of implantation increased by 1.74 for embryos with a blastocyst size greater than the mean (147 ± 19.1 μm). The performance of the algorithm was represented by an area under the curve of 0.70 (p < 0.01). In conclusion, this study supports the association of a large blastocyst size with higher implantation potential and suggests that automatically measured blastocyst morphometrics can be used as a precise, consistent, and time-saving tool for improving blastocyst selection.

摘要

囊胚选择主要基于形态评分系统和形态动力学数据。这些方法涉及主观评分和耗时的技术。人工智能允许进行客观和快速的囊胚选择。在这项研究中,使用形态动力学和 Gardner 标准选择了 608 个囊胚进行转移。回顾性地,通过语义分割神经网络模型自动测量囊胚大小、内细胞团 (ICM) 大小、ICM 与囊胚大小比和 ICM 形状的形态计量学参数。该模型在 1506 个视频上进行了训练,其中 102 个视频用于验证,模型与 ICM 和滋养层之间没有重叠。单变量逻辑分析发现囊胚大小和 ICM 与囊胚大小比与着床潜力显著相关。多变量回归分析,调整了女性年龄,发现囊胚大小与着床潜力显著相关。囊胚大小大于平均值的胚胎着床的几率增加了 1.74 倍(147±19.1μm)。算法的性能由曲线下面积 0.70(p<0.01)表示。总之,这项研究支持大囊胚大小与更高的着床潜力相关,并表明自动测量的囊胚形态计量学可以作为一种精确、一致和节省时间的工具,用于改善囊胚选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c16/10480200/4880f7be449b/41598_2023_40923_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验